
Akhil Sahai
and

Sven Graupner

Web Services
in the

Enterprise

NETWORK AND SYSTEMS MANAGEMENT
Series Editor: Manu Malek

Web Services
in the

Enterprise
Concepts, Standards,

Solutions, and
Management

Web Services in the Enterprise
Concepts, Standards, Solutions,
and Management

NETWORK AND SYSTEMS MANAGEMENT
Series Editor: Manu Maiek

Stevens Institute of Technology

Hoboken, New Jersey

ACTIVE NETWORKS AND ACTIVE NETWORK

MANAGEMENT: A Proactive Management Framework

Stephen F. Bush and Amit B. Kulkarni

BASIC CONCEPTS FOR MANAGING

TELECOMMUNICATIONS NETWORKS: Copper to sand to

Glass to Air

Lawrence Bernstein and C M. Yuhas

COOPERATIVE MANAGEMENT OF ENTERPRISE NETWORKS

Pradeep Kumar Ray

INTEGRATED MANAGEMENT FROM E-BUSINESS

PERSPECTIVES: Concepts, Architectures, and Methodologies

Pradeep Kumar Ray

MANAGING BUSINESS AND SERVICE NETWORKS

Lundy Lewis

WEB SERVICES IN THE ENTERPRISE: Concepts, Standards, Solutions,
and Management

Akhil Sahai and Sven Graupner

A Continuation Order Plan is available for this series. A continuation order will bring delivery of
each new volume immediately upon publication. Volumes are billed only upon actual shipment.
For further information please contact the publisher.

Web Services in the Enterprise
Concepts, Standards, Solutions,
and Management

Akhil Sahai and Sven Graupner
Hewlett-Packard Laboratories

Palo Alto, Calilornia

^ Spri rineer ĝ

Library of Congress Cataloging-in-Publication Data

Sahai, Akhil.
Web services in the enterprise : concepts, standards, solutions, and management / Akhil

Sahai, Sven Graupner.
p. cm. - (Network and Systems management)

Includes bibliographical references and index.
ISBN 0-387-23374-1 (alk. Paper)
1. Web services. 2. Electronic commerce. I. Graupner, Sven. II Title. Ill Kluwer

Academic/Plenum Publishers network and systems management.

TK5105.88813.S24 2005
006.7'6—dc22

2004062645

Springer Science+Business Media, Inc.
New York, Boston, Dordretch, London, Moscow

ISBN 0-387-23374-1 Printed on the acid-free paper.

© 2005 Springer Science+Business Media, Inc.
All Rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
Inc. 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 11323570

springeronline.com

Dedicated to people who gave me life and who make my life
worth living: my parents, Dada, my beloved wife Nina, Daddy
and Mama

-Akhil

Dedicated to my parents, friends and colleagues who gave me
inspiration to write this book

-Sven

PREFACE

Enterprise IT infrastructure is getting increasingly complex. With the
increase in complexity has arisen the need to manage it. Management in
general can be seen as the process of assuring that a managed entity meets its
expectations in a controlled and predictable manner. Examples of managed
entities are not only components, entire systems, processes, but also people
such as employees, developers, or operators, and entire organizations.
Traditional management has addressed some of these issues in varied
manner. The emergence of Web services has added a new complexity to the
management problem and poses a new set of problems. But it also adds to
the mix a set of technologies that will make the task of management simpler.

Management of Web services will be critical as businesses come to rely
on them as a substantial source of their revenue. The book tries to cover the
broad area of web services, the concepts, implications for the enterprise,
issues involved in their management and how they are being used for
management themselves. The book is intended as a reference for current
practice and future directions for web services and their management.

The book is directed at:

• Computing professionals, academicians and students to learn about
the important concepts behind the web services paradigm and how
it impacts the enterprise in general and how it affects traditional
application, network and system management.

• Business Managers and Analysts to understand the implications of
web services and their management on the enterprise

vn

vni

• System managers to understand the concepts, impact, techniques,
and standards that are either available today or are emerging to
manage web services

• Researchers, to complement their current knowledge and expertise.

• Network and System Management vendors in understanding where
management capabilities are required in the domain of web
services and how to go up the management stack.

Acknowledgements

We would like to thank the reviewers (who remained anonymous till the
book went into production), Prof. Lundy Lewis, University of New
Hampshire, Durham, New Hampshire, USA and Dr. Pradeep Ray,
University of New South Wales, Sydney, Australia for the invaluable
comments and suggestions that they provided. These comments and
suggestions greatly improved the book. We would also like to thank
researchers at HP Labs, Palo-Alto who we collaborated and researched some
of the web services and management technologies with and who gave us the
motivation to write the book. Thanks are due to management team, namely
Vijay Machiraju, Mohammed Dekhil, Kumar Goswami and Rich Friedrich
for being supportive and encouraging of the whole endeavor.

My deepest gratitude are towards my parents whose immense belief, love
and self-less sacrifice has made me what 1 am today. I would like to thank
my wife Nina for her understanding and patience and for putting up with me
during writing of the book. I also thank her for the painstaking review she
undertook for the book. She has been an immense source of strength and of
unconditional love throughout. Acknowledgements are also due to my
brother for reviewing and giving me feedback on the book and in general
providing me guidance at every step of my life and for being there for me.

Akhil Sahai

June 2004

I would like to acknowledge my parents, friends and colleagues who
gave me inspiration to write this book

Sven Graupner

June 2004

CONTENTS

PART I - WEB SERVICES AND MANAGEMENT

Chapter 1 - Introduction
1. Introduction 3

2. Web Services: Definition 3
3. Market Trends 4

3.1 Transformations in Enterprise System Management 4
3.2 Emergence of Web Services5
3.3 Need for Web Service Management 8
3.4 Growing Potential for Federated Management 9

4. Management of Web Services 9
5. Service Life Cycle Management 11
6. What to Expect in the Book 13

Chapter 2 - Overview Of Web Services
1. Introduction to Web Services 15

1.1 Tightly Coupled Distributed Software Architectures 15

1.2 Loosely Coupled Distributed Software Architectures 16
1.3 Client Utility System (E-Speak) 16
1.4 T-Spaces 17
1.5 Jini 17

2. The State of the Art in Web Services 17
2.1 Web Services Description 18
2.2 Web Services Discovery 21

2.2.1 E-Marketplace 21
2.2.2 UDDI 21
2.2.3 Web Service Inspection Language 22

2.3 Web Services Choreography 23
2.3.1 Web Services Flow Language , 23
2.3.2 XLANG 24
2.3.3 BPEL4WS 24

IX

X Contents

23 A ebXML 25

3. Web Services Management 26

3.1 WSRF - The Web Services Resource Framework 27

3.1.1 History .27

3.1.2 Web Services and Service Oriented Architecture 28

3.1.3 Stateful Resources and Stateless Web Services 29

3.1.4 WSRF Definitions 31

3.1.5 Summary of WSRF ...35

3.2 Web Services Distributed Management (WSDM) 36

4. Platforms for Web Services 38

4.1 First Generation: CGI and Perl 38

4.2 Second Generation: Java 39

4.3 Third Generation: Richer Development and Run-time
Environments 39

4.4 Fourth Generation: Web Services Frameworks 40

5. Putting It All Together 41

Summary 45

Chapter 3 - Application Management and Web Services

1. Introduction 47

2. Application Life Cycle 48

3. Processes in Application Management 50

3.1 Generalized View on Application Management 51

3.2 Management Process Life Cycle 52

3.3 Definition of a Management Process (at Creation Stage) 53

3.4 Instrumenting the Managed Domain (at Deployment Stage) 54

3.5 Execution of a Management Process (Operation Stage) 55

3.6 Management Process Hierarchies 56

3.7 Management of Management Processes 57

4. Aspects in Application Management 57

4.1 Taxonomy 1: Management Aspects Versus Application Life
Cycle 59

4.2 Taxonomy 2: Application Life Cycle Versus Management
Process Steps 61

5. Management in Application Creation 62

Contents xi

5.1 Definition of Management Processes for Application Creation
63

5.1.1 Example 1: Implementation 63

5.1.2 Example 2: Assurance, Testing 63

5.2 Instrumentation in the Managed Domain 64

5.3 Execution of Management Processes 64

6. Management in Application Deployment 64

6.1 Definition of Management Processes for Application
Deployment 65

6.1.1 Example 1: Installation and Configuration 65

6.1.2 Example 2: Customizing an Application 65

6.2 Instrumentation in the Managed Domain 65

6.3 Execution of Management Processes 66

7. Management During Application Operation 66

7.1 Definition of Management Processes for Application
Operation 66

7.1.1 Example 1: Fault Management 67

7.1.2 Example 2: Performance Management 68

7.1.3 Example 3: SLA Assurance 69

7.2 Instrumentation in the Managed Domain 71

7.3 General Interaction Pattern for Instrumentation Protocols 72

7.3.1 CMIS and CMIP (OSI Management) 73

7.3.2 OMG 75

8. Summary 76

Chapter 4 - Enterprise Management and web services

1. Introduction 77

1.1 System Management in the Enterprise .78

1.2 Changing Requirements in IT Infrastructure ...79

1.3 Enterprise Management 79

1.4 Role of System Management in the Enterprise 80

2. Enterprise Management Systems 80

2.1 Agent-based Management Infrastructure 83

2.2 Three-tiered Management Architecture 84

2.3 FCAPS Management in the Enterprise 85

XI1 Contents

3. Integrated IT Service Management (ITSM) 89

3.1 The IT Infrastructure Library (ITIL) 90

3.1.1 The ITIL Toolkit 90

3.2 ITSM General Methodology 91

3.3 IT Service Management Processes 92

3.4 ITSM General Implementation 93

3.4.1 Service Delivery Processes 94

3.4.2 Service Support Processes 96

4. Model-based Management 100

4.1 Models in Systems Management 102

4.2 Models for Service Management 103

4.2.1 Common Information Model (CIM) 104

4.2.2 CIM Meta Model 105

4.2.3 CIM Core and Common Model 106

4.2.4 CIM and Web-Based Enterprise Management (WBEM). 109

4.2.5 TMF-TOM/eTOM 110

4.2.6 Parlay / OSA 111

4.3 Model Creation Process 112

4.4 A Generic Service Model 113

4.5 Recursive Application of the Service Model 116

4.6 Models for Diagnosis Rules 117

5. Summary 118

PART II -̂ PERSPECTIVES ON WEB SERVICES MANAGEMENT

Chapter 5 - Managing Web Services From An E-Business Perspective

1. Introduction 121

2. The Method of Balanced Scorecards 123

2.1 Balanced Scorecard and Management 125

2.1.1 Double-Loop Feedback 125

2.1.2 Outcome Metrics 126

2.1.3 Management by Fact 126

3. Web Services and Business Problems 127

3.1 Key Business Areas Addressed by Web Services 129

3.2 Business-to-Consumer (B2C) Domain 130

Contents xiii

3.3 Business-to-Business (B2B) Domain 131

4. Customer Life Cycle 132
5. Web Services Business Metrics 133

5.1 Web Services Business Metrics Classification 136
5.1.1 Customer Life Cycle Metrics 137
5.1.2 Customer Metrics 138
5.1.3 Customer ROI Metrics 144
5.1.4 Web Site Behavior Metrics 149

Summary 156

Chapter 6 - Managing Applications And IT Infrastructure Of Web
Services

1. Introduction 159

1.1 Application View of Web Services 159
1.2 Infrastructure View to Web Services .161

2. Linking IT Infrastructure Management with Web Services 162
3. Managing the Application Infrastructure of Web Services 163

3.1 Metric Collection and Analysis in Application Infrastructure of
Web Services 163

3.2 Web Services Metric Analysis 165
3.3 Rule-based Processing 167

3.3.1 Handling Multiple Sites 168

3.3.2 Web Service Metric Reporting 168
3.4 Basic Monitoring Functions in Web Services Applications . 169

4. Linking Infrastrutcure Management to Web Service Management.... 171
4.1.1 Network Management 172

4.1.2 Systems Management 173
4.1.3 Storage Management 174
4.1.4 Application Management 175

5. New Developments in IT - Infrastructure Management From the Web
Service Perspective 177

5.1.1 IT as a Service Provider 178
5.1.2 Virtualization as Enabler 179

6. New Challenges Driving Infrastructure Management 181
7. Summary 183

xiv Contents

PART III - THE PRACTICE OF WEB SERVICES MANAGEMENT

Chapter 7 - Instrumentation of Web Services

1. Introduction 187

2. Instrumentation 187

2.1 Management Information Exposed Through Instrumentation
189

2.2 Manageability and Instrumentation Requirements for Web
Services 189

2.3 Standards in Instrumentation and Manageability 193

2.3.1 SNMP 193

2.3.2 System Application MIB .196

2.3.3 Application Management MIB 196

2.4 Application Response Management (ARM) 198

2.5 Application Response Time Measurement (ART) 201

2.6 Windows Management Instrumentation (WMI) 201

2.7 Java Management Extensions (JMX) 202

2.7.1 Instrumentation Level 202

2.7.2 Agent Level 203

2.7.3 Distributed Services Level 203

2.8 Log File Analysis .203

2.9 Network Packet Sniffing 205

2.10 Web Server Plug-ins 207

2.11 SOAP Instrumentation 208

2.12 Handling Dynamic Content 209

Summary 210

Chapter 8 - Managing Composite Web Services

1. Introduction 211

2. Web Service Composition 212

3. Managing Web Service to Web Service Interactions 213

3.1 Web Service Transactionahty 214

3.2 Web Service Reliability 220

3.3 Web Service Security 221

3.3.1 Secure Data Communication and Secured Networks 222

Contents xv

3.3.2 Digital Signatures 223

3.3.3 Digital Certificates 224

3.3.4 Secure Authentication and Certification 224

3.3.5 WS-Security 227

4. Service Level Agreements 228

4.1 Specification of Service Level Agreements 229

4.L1 Introduction to SLA 229

4.1.2 Rethinking SLA Specifications 231

4.1.3 SLA Specification languages 234

5. SLA Monitoring 238

5.1.1 SLM Engine 239

5.1.2 Service Level Monitoring Process Flow 239

Summary 242

Chapter 9 - Management Using Web Services

1. Introduction 243

2. Uniform Representation Through Web Services 243

3. Role of Management System in Virtualized Environment 245

4. Assumptions in Legacy Management Systems Challenged by
Virtualization 246

5. Conclusions for Management Systems 249

6. Interface for a Generic Virtualization Layer 249

6.1 Inner-Layer Management 251

6.2 Cross-Layer Management 251

6.3 Time-dependence of Associations 252

6.4 Association Interface 252

7. Applications 253

7.1 Utility Computing 253

7.1.1 The Stages Towards Utility Computing 255

7.1.2 Utility Computing Infrastructure 256

7.2 Web Services in Grid 257

7.2.1 Basic Interfaces and Behavior 259

Summary 261

xvi Contents

Appendix - Web Services Management Products And Solutions

1. Introduction 263

2. HP OpenView Management Suite 264

3. Tivoli Management Suite 269

3.1 Tivoli Product Portfolio 271

4. Web Service Networks 274

4.1 Grand Central Communications 275

4.2 Flamenco Networks 275

4.3 Kenamea 275

4.4 Talking Blocks 275

5. CA Unicenter 276

6. Actional 277

7. AmberPoint 277

8. Confluent 280

9. Microsoft Application Center 280

10. Service Integrity 282

11. The Utility Data Center (UDC) - Integrated Data Center Resource
Management 283

11.1 Resource Virtualization in the UDC 284

11.2 The UDC Management System 286

References 289

Figures 303

Index 305

PART I

WEB SERVICES AND MANAGEMENT

Chapter 1

INTRODUCTION

1. INTRODUCTION

The emergence of web services paradigm brings both complexity as well
as a new set of technologies to the enterprise. Just as they complicate the
task of traditional enterprise and application management they also simplify
it by providing capabilities to virtualize network, system, application
resources and thus uniformly manage them. In order to understand web
services and the field of Web service management let us define web services
and look at the recent market trends and their impact on traditional network
and system management.

2. WEB SERVICES: DEFINITION

Web services may be defined as distributed services that are accessible
via the Web through Uniform Resource Locators (URLs). With this broad
definition, any object that can be invoked using Internet protocols qualifies
as a Web service. W3C however has a much stricter definition of Web
services. Web services (as per w3c) are described as distributed services
that are identified by URI, whose interfaces and binding can be defined,

4 Chapter 1

described and discovered by XML artifacts, and that support direct XML
message-based interactions with other software applications via internet-
based protocols. For our purpose, we will refer to Web services in both the
looser sense (in terms of web sites that are currently used') and in the stricter
sense. Web services that perform useful task would often exhibit the
following properties:

1. Discoverable: One of the critical requirements for a web-service to
provide service to other users. So it has to be discovered by consumers
(human users or other Web services).

2. Communicable: This is often asynchronous messaging as opposed to
synchronous messaging.

3. Conversational: A conversation involves sending and receiving
documents in a context. Complex interactions between Web services
involve multiple steps of communication that are related to each other.

4. Secure and Manageable: Security, manageability, availability, and fault
tolerance are critical for a commercial web-service.

MARKET TRENDS

3.1 Transformations in Enterprise System Management

Enterprises continue turning their applications into services, for their
internal operation as well as for external collaboration. Services are made
out of applications, which in turn run on machines (systems) distributed over
a network. The trend that is appearing fast is that of gradual transition to e-
businesses. An e-business infrastructure would comprise a large number of
business processes [Leymann 2000] Steps in a business process are handled
by either humans (as is the case in work-flow management systems)
automated systems, or some times will be outsourced to external providers.
As the intention of an e-business is to undertake business on the web, they
will also need mechanisms that enable customers to access their services
through the Internet. Web services [Cerami 2002] are becoming a well-
accepted way of putting e-businesses on the web as well as enabling users
(either humans or other Web services) to use them. Web service refers to a
business or computational function delivered using standard web

' We will refer to the current web service implementations that do not correspond to web
service standards as web sites

Introduction 5

technology, such as HTTP (Hypertext transfer protocol), XML (Extensible
markup language) [Pitts 2000], and SOAP (Simple object access protocol)
[Box] delivered over the Extra-, Intra- or Internet. According to many
market research firms [Gartner 2004] it is likely that, by the year 2006,
enterprises that want to remain competitive will need to provide commonly
requested data to its partners through web services, and they will transform
the IT industry and software professional services in five years. These Web
services have to be interfaced with the internal business processes to receive,
fulfill and deliver orders. A complex infrastructure is usually a reality in an
e-business environment.

Traditionally, the problem of enterprise management has been limited to
the areas of network and system management. For example, the IT staff was
concerned primarily about the smooth operation of networks and systems.
More recently, as the role of IT is transforming from "infrastructure support"
to "service provisioning", more and more emphasis is given to the overall
application and service management rather than management of bits and
pieces of networks and systems. In order to manage the e-business
infrastructure, it is necessary to have frameworks and tools that allow
business managers/analysts/users to define, measure, and analyze business
and IT metrics and to understand their correlation. They also need
management systems that can manage business processes and Web services
that constitute their own enterprise e-business infrastructure but also manage
relationships with other enterprises.

3.2 Emergence of Web Services

Services appeared when the web became established as an infrastructure
where people could freely and easily access information by clicking and
viewing documents in browsers. Services in general are understood as useful
functions that provide value to people. Providing information has been the
main service in the web. Other services were adopted from the underlying
Internet: email, news, and file transfer. Actual services in the web that have
been recognized as services were related to searching and classifying
information. The need for such services emerged from continuous growth in
amounts of information, this growth has been happening in the web from its
very beginning in an uncontrolled and unstructured manner. Generally,
targeted search for information has been one of the fundamental services in
the web.

Search services in the web quickly expanded into professional
information providers where people could find well-classified and high-
quality information. At the same time services quickly expanded into

6 Chapter 1

businesses where products were advertised and sold, and in the case of
digital products, could also be delivered through the web. Payment services
were needed to facilitate those businesses.

To summarize, this first initial wave of Web services has been dominated
by people, human users interacting through web browsers with information
or business providers offering services on the web. The interaction pattern
was characterized by human to machine, or client to server, or customer to
business or information provider.

Since human users have been drivers and the target audience of first-
wave of services in the web, technology underlying those services was
focused on access, delivery and presentation of information in web browsers.
HTTP, the Hypertext Transfer Protocol has been used to deliver documents
across the web. HTML, the Hypertext Markup Language has been used to
present web content in browsers.

It soon became obvious that it was desirable using the web as pervasive
communication and interaction infrastructure not only for connecting people
to information, but also connecting applications to one another. Different
requirements occurred. Connecting applications did not require browsers and
presenting information suitable for human beings which has been the
foundation of HTML. Another set of technologies was needed that could
encompass the needs for connecting applications in the open web
infrastructure. HTTP, as a transport protocol, continued to be used. XML,
the extended Markup Language, became the substitute for HTML for
connecting applications omitting the presentation capabilities of HTML and
introducing a well-defined structure that was suitable and convenient for
application interactions.

The second wave of services related to the web, or what is actually being
referred to as Web services, is characterized by using HTTP as transport
protocol and XML as format for representing and exchanging information
between applications in the web infrastructure. Web services have well-
defined interfaces, also described in XML. Web services use service
registration and discovery facilities for contacting one other in the dynamic
and constantly changing environment in the web. Once contact has been
established, a set of XML languages exists by which business interactions
can be described and conducted.

XML as a technology enabled the interaction between business
applications and thus businesses over the web infrastructure. Business to
business interaction dominates this second wave of Web services in contrast
to customer to business interaction of the first wave. A variety of XML
specializations appeared for conducting business functions among business

Introduction 1

partners. Online market places emerged. Corporations have been organizing
their supply chains and financial chains around Web services. Terms used
for these electronic business functions are e-Commerce and e-Business.

The important achievement of Web services technology has been the
unification of former proprietary protocols and technologies that were used
for connecting business applications, and their consolidation into a unified
set of technologies characterized by HTTP as transport protocol and XML as
representation and exchange format, as well as Java as the preferred
implementation language for business functions.

After the first wave had linked people to information and the second
wave had linked business applications and business functions together, a
third wave is about to appear. This third wave can be seen as linking
computational resources together providing access to information and
processing capability anytime and anywhere. This third wave of services on
the web refers to computational resources and services offered on a web-like
connection fabric. This fabric is also referred to as the Grid. Computational
grids are established in networks that provide certain minimum capacities in
terms of throughput and bandwidth required to make sharing and using
computational resources reasonable in a web-like manner. Those networks
have been emerging recently providing sufficient capacity for linking
computational resources together as well as information about resources
offered on the grid and their terms of use. Information about available
computational resources may be advertised in the same way as information
about products or services offered on the web. Users can locate
computational resources on the web exactly the same way they find any
other information on the web today. The new quality of computational
services on the web is the capability to link users to those resources in such a
way that users can use those resources effectively. Using resource from the
network requires a certain capacity in networks that has just recently
evolved. For this reason, the computational grid (or web) appeared later than
the information web and the business web that required less bandwidth for
operation.

Several other manifestations and variations of web-services are finding
their way into businesses. In general, software systems seem to become
services. For instance. Sun offers StarOffice over the Internet, SAP R/3
provides functionality over a portal. Buying and using services over the
Internet has become as convenient as buying any product. This trend is also
fostered by the convergence of Web services systems with commercial Grid
systems that is currently underway.

Commercial Grid systems are inherently service-centric. In the Open
Grid Services Architecture (OGSA), all functions that traditionally belonged

8 Chapter 1

to an enterprise IT infrastructure are represented as Web services using the
same set of technologies introduced above. The notion of virtual
organizations emphasizes openness and cross-enterprise connectivity
allowing tightly coupled collaboration.

Another consequence of Internet-based services is the huge growth in
virtual enterprises and outsourced services. As service providers focus on
creating and offering value-added services, they are more and more inclined
to outsource non-strategic parts of their businesses to other service
providers. Web services enable this trend by facilitating easy composition of
external services. The business logic of any given service is no longer
confined within the boundaries of a single enterprise. Rather, it is federated
across several components that are spread across multiple enterprises.

Another trend is turning entire computational platforms and
infrastructures into services offered through the Internet. Utility computing
is the keyword here meaning that Web service providers do not need to own
the resources where their services are being performed, they may rather rent
them on a per-use basis with utility infrastructures in place that
automatically adjust service capacities to demand fluctuations. Sustainable
business models need to be developed for utility use models as well as
management of systems needs to be expanded beyond the current scopes of
rather closed enterprise management systems.

3.3 Need for Web Service Management

With the potential and growth of Web services, more and more
developers are developing Web services and other internet-based
applications. Increasingly, as more enterprises rely on Web services as a new
channel for conducting business, management of web-services will become
particularly important. The problem of Web Service Management is to
maintain a service in a desired state by monitoring and controlling its opera­
tions and use of resources. Poor performance, lack of availability, crossing
pre-determined thresholds, and contract violation are some of the ways in
which Web services can deviate from their desired state of operation. Such
deviations could occur for various reasons - errors in application or service
logic, failures in networks and systems that host these services, improper
configuration parameters, and unauthorized intrusion are some examples. A
Web service management system both detects and corrects problems in real­
time, or it observes the trends in order to predict and rectify the situation
before problems occur. Web service management systems can also perform
historical analysis of the services they manage and help in planning
activities. Further, they can also be integrated into more powerful business-

Introduction 9

management systems to assess the impact of the services on the overall
business.

While the problems of traditional application and service management
remain largely unsolved, Web services and business processes add another
layer of complexity in terms of management. These additional complexities
occur for three reasons: First, they are caused by further automation in
enterprises. Some of the tasks that have traditionally been performed by
humans such as negotiation and brokering can now be automated. As the
number of tasks that are automated through software components increases,
so does the complexity in managing them. Second, Web services require
more dynamic software composition. Traditionally, a set of software
components was statically glued together to create a service. This reduced
the flexibility of the overall service. With Web services and business
processes, appropriate service components that match a given set of
requirements can be dynamically located over the Internet and bound
together on demand. This binding can be changed dynamically when better
matches are found. Many of the existing management systems are not
designed to handle such dynamism. Third, the business logic is federated
across several enterprises as portions of the service could be outsourced. The
problem of enterprise management has now changed to "cross-enterprise
management" performed in infrastructures that follow a utility model of
operation.

With all these demands and complexities, there is a strong need for Web
service management solutions.

3.4 Growing Potential for Federated Management

Web services management is essentially a problem that pertains to
multiple enterprises as they will need to interact across management
domains. This will lead to management that can cope with federated
environments.

4. MANAGEMENT OF WEB SERVICES

Service management involve functionality that range from both top-to-
bottom and end-to-end (Figure 1).

Web services fit nicely into the existing enterprise stack. The existing
enterprise stack has IT infrastructure at the bottom. The applications that
execute on this IT infrastructure form the next layer. Web services are
actually applications with standard interfaces and behavior defined on them.

10 Chapter 1

They effectively form part of the next layer i.e. the service layer. Since Web
services are inherently applications, Web service management deals a lot
with application management. The business process layer is the next layer.
The business process layer deals with how to orchestrate operations from
multiple Web services so as to achieve a business objective. These business
processes may or may not involve humans. The business processes enable
the topmost layer of the organization stack i.e. the business layer to
coordinate the services in a particular manner. Undertaking top-to-bottom
management of an enterprise involves putting Web service management in
perspective. This involves understanding what Web service management
means in terms of managing the layers below it and how it relates to the
management of layers above it.

Just as Web services fit nicely into the enterprise stack, they introduce
new set of problems. They enable enterprises to interact amongst each other.
These services may compose with other services from other enterprises.
These services have to agree on standard interfaces of describing
themselves, discovering others and conducting business with each other.
Web service management thus also has to deal with end-to-end management
issues.

There are another alternate three dimensions to Web service
management. These three dimensions exist irrespective of whether we are
managing top-down or end-to-end. These dimensions can be classified, in
need of better name, as tasks, metrics, and time dimensions.

Tasks
i

Control w

Planning m

Diagnostics m

Analysis m

Monitoring m

k

•^

i

e

1

L

r

'^-

N 4 J ^

w
End-to-end »

Metrics

®^Lifecycle

Conversations

^t^ Contracts

^ X ^ Availability

Performance

f \
T i

1 ^
1 w-

Hstory Current Estimate

Figure 1: Web services space of tasks, metrics and time.

Time

Introduction 11

The time dimension is important because the management data that is
collected has to be archived and studied by the management system.
Historical archiving of data is important for post fault analysis, diagnostics
and analytics and capacity planning. Not only are historical archives
important, the current data that is being obtained is extremely relevant. The
current data is important for real-time monitoring and control. It is important
that the current data be relevant and sampled at the frequency that is
relevant. Based on the measurement estimates of the measurements that are
relevant for proactive management can be undertaken.

On the tasks dimension, the simplest task is that of monitoring.
Monitoring involves invasive and non-invasive instrumentation. Once
monitoring data is collected, analytics can be performed on top of the data so
collected. Diagnostics involves identifying problems and undertaking root-
cause analysis. Planning involves usually short-term and long-term capacity
management issues. Control, the ultimate holy grail of management is to
automatically detect problems and turn control knobs to correct the
problems. Most of the current control mechanisms are human controlled and
the management community is trying to automate the process.

The metrics dimension is probably the most important dimension of
management as it describes what the quantities that need to be measured are.
These metrics relate to performance, availability and reliability at the least.
Contracts have to be signed and agreed to between Web services.
Contract/SLA management (pg. 228) thus involves the next step of
complexity in this dimension. Web services indulge in conversations (XML
document exchanges in a context). These conversations have to be managed
as well. Conversations cross enterprise boundaries and so add further
complexity to the metric determination and measurement. These services
have a life cycle of their own. They can be brought up, paused, resumed, and
brought down in a planned or unplanned manner. Life cycle management is
thus an important aspect of the metrics dimension. Undertaking life cycle
management necessitates defining management interfaces on the Web
services being managed that enable these life cycle operations.

5. SERVICE LIFE CYCLE MANAGEMENT

A typical life cycle associated with Web services involves the

• Service creation: In this phase, Web service interfaces, operations
are described, service is designed, and its corresponding
implementation undertaken.

12 Chapter 1

• Service provisioning: Once the service has been created, the
corresponding resources have to be assigned in terms of servers,
software, network bandwidth so that the service can be
commissioned. Service provisioning will involve marshalling the
requisite resources for putting up the Web service and bringing the
Web service into existence.

• Service composition: Sometimes services may have to compose
with other services for fulfilling their tasks, for example most of
the web sites that undertake travel booking send credit card
information to Verisign web site for authorization. This is an
example of service composition. Service composition thus may be
pre-specified at the service creation time or may be done
dynamically by discovering partner services through directory
mechanisms, like UDDI (Universal Discovery and Declaration
Interface) registries or through marketplaces.

• Service usage: This is the phase when the service actually gets
used. Users would start sending requests to the service. The
transactions that the users initiate, the resources that the service
uses and the performance of the service has to be monitored and
corresponding data collected through instrumentation.

• Service Management: Once the management data is collected the
information has to be modeled so that service management can be
undertaken. This will involve analytics on top of the service data,
characterization of performance, Service-Level Agreement
monitoring and violation detection, and finally control that may
involve changing service design/or service re-creation with new set
of requirements that appear because of changed user requirements
or monitoring data. ^

^^ ?rvice
Service _ movisionmg

M a n a g e m e n t

!>ervice
imposition

Usage

Figure 2: Service life cycle.

Introduction 13

6. WHAT TO EXPECT IN THE BOOK

This book describes the concepts and imphcations on the enterprise
because of emergence of web services. It also addresses various aspects
related to management of web-services. The main focus of the book is to
provide technical details involved in understanding and constructing the role
of web services in the enterprise, understanding the role that the multiple
standards play, and how to create well-managed web-services and design
flexible management systems for managing them.

This book is organized in three parts:

• Part 1 gives an overview of Web services, the standards and
concepts involved. It tries to seamlessly connect them to the
domains of traditional application and enterprise management. At
the end of this part, the reader will be able to understand what the
involved standards and technologies are and how they will
interoperate for performing e-business, EAI and Web service to
Web service communication. Considering that standards are
working at cross-purposes, it is necessary to understand how the
different standards on Web services fit together. It will also
describe what management in this area means, what the existing
standards are, and how it relates to traditional application and
enterprise management. The reader will get an understanding of the
management space and an understanding of the significant tasks in
web-service management, e.g., monitoring the performance,
availability, and other SLA/Contract-related metrics, analyzing the
collected data, and diagnosing problems.

• Part 2: Web services fit in nicely into the enterprise stack. At the
lowest layer of the stack is the IT infrastructure. This is followed
by the application/Web services layer. The business layer and the
business processes layer usually reside on top of the Web services
layer. Web service management thus not only has to relate to
management of IT infrastructure below but also to management of
business processes and the business layer. This part thus deals with
putting Web service management in perspective of the overall
management and relating it to overall management task both of IT
management and that of e-business management.

• Part 3: Building a good management solution requires three things
- defining the metrics based on the business contracts, properly
instrumenting the web-services to generate the required
measurements and events based on the defined metrics, and

14 Chapter 1

building the appropriate management system that can use the data
for the evaluation of metrics. The focus in Part 3 of the book is to
explain the techniques and standards for instrumentation. It
describes the existing invasive standards (e.g. ARM, JMX,
NSAPI/ISAPI filters) and non-invasive instrumentation
technologies (SNMP, logs). Some of the web-services are designed
with manageability in mind - others are not. Developers need tools
and techniques for placing instrumentation in both cases. This part
also deals with how the management systems can be used by
business managers/users/IT administrators to track their e-
businesses, and how the management system could be used for
managing composite web services. It describes the standards that
enable web service to web service interactions, especially inter-
enterprise business relationship management based on
SLA/Contract management with other Web service. This part also
describes the recent work in the area of utility computing and grid
computing that utilize the approach of using Web services for
virtualization of resources that they manage.

Chapter 2

OVERVIEW OF WEB SERVICES

1. INTRODUCTION TO WEB SERVICES

Web services are at the cross point of the evolution paths of service centric
computing and World Wide Web. The idea of Web service has been to
provide service centric computing by using the Internet as the platform.
While services are being delivered over the Internet (or Intranet), the World
Wide Web has strived to become a distributed, decentralized all pervasive
infrastructure where information is put out for other users to retrieve. It is
this decentralized, distributed paradigm of information dissemination that on
meeting the concept of service centric computing has led to the germination
of the concept of Web services.

I.l Tightly Coupled Distributed Software Architectures

Despite an early beginning, distributed computing remained mostly in
discussions and theoretical dissemination, until the introduction of Object
Management Group (OMG) Common Object Request Broker Architecture
(CORBA) and Microsoft's Distributed Component Object Model (DOOM).
Both CORBA and DCOM vastly simplified object sharing among
applications by creating an illusion of a single machine over a network of
(heterogeneous) computers. They did so by building their abstractions on
middleware layers that are more or less OS- and platform independent.

In these software architectures, objects define a number of interfaces in
Interface Description Language (IDL) and advertise their services by
registering the interfaces. These interfaces are compiled to create the stubs.

15

16 Chapter 2

Objects are assigned identifiers on creation. The identifiers are used for
discovering their interfaces and their implementations. Sun Microsystems'
Java RMI (Remote Method Invocation) provides similar middleware
functionality, where a network of platform-neutral Java virtual machines
provides the illusion of a single machine. Java RMI is a language-dependent
solution though Java Native Interface (JNI) provides language independence
to some extent.

1.2 Loosely Coupled Distributed Software Architectures

The notion of service-centric computing has emerged to provide a capability
of virtualizing a large number of devices and their functionality through
concepts of service and method invocation. For instance, viewing document
printing as a printing service provided by a printer can be viewed as a
method invocation on a proxy object of a printer.

These services tend to be dispersed over wider administrative area, often
straddling domain boundaries for better resource utilization through load
balancing and exploitation of locality. Such physical distribution called for
more loosely coupled software architectures where scalable advertising and
discovery are a must and low-latency, high-bandwidth inter-processor
communication is highly desired. Specifying and enforcing security policies
as well as protecting data themselves at every comer of a system can no
longer be put off.

A slew of service-centric middleware developments have come to light.
We note three distinctive systems from computer industry's research
laboratories, namely, HP's client utility (e-speak), Sun Microsystems' Jini,
and IBM's T-spaces (here listed in the alphabetic order). These have been
implemented in Java for platform independence.

1.3 Client Utility System (E-Speak)

HP's client utility system is a less-publicized effort that eventually led to
HP's e-Speak platform. It was one of the earlier forms of the peer-to-peer
system meant for Web service registration, discovery and invocation (Kim,
2002). The fundamental concept is to visualize every element in computing
as a uniform representation called "service (or resource)". Using the
abstraction as a basic building block, it provides facilities for advertising and
discovery, mediation and management, fine-grain capability-based security
and dynamic service composition. In client utility as opposed to other such
efforts, advertisement and discovery were made visible to clients. Clients
can describe their services using vocabularies and can specifically state what

Overview of Web Services 17

services they want to discover. Vocabularies are a set of attributes that can
be parameterized by the advertising services. The services compose with
each other after discovering partner services through such registries.

1.4 T-Spaces

IBM's T-Spaces (T-Spaces 1999) is a middleware that intends to enable
communication amongst devices and applications in a network comprising
of heterogeneous computers and operating systems. It is a network
communication buffer with database capabilities that extends Linda's Tuple
space communication model with asynchrony. T-Spaces support
hierarchical access control at the Tuple space level. Advertisement and
discovery are implicit in T-Spaces and provided indirectly through shared
Tuple spaces.

1.5 Jini

Sun Microsystems Jini technology is a set of protocol specifications that
allows services to announce their presence and discover other services in
their proximity. It enables a network-centric view of computing. However,
it relies on the availability of multicast capability that limits its applicability
to services/devices connected with a local area network (such as home
network). Jini exploits Java's code mobility and allows a service to export
stub code implementing a communication protocol using Java RMI. Joining,
advertisement, and discovery are done transparently from other services. It
has been developed mainly for collaboration within a small, trusted
workgroup and offers limited security and scalability supports.

2. THE STATE OF THE ART IN WEB SERVICES

Web services are becoming more and more prevalent. They are emerging
as e-business related web sites and portal sites. Some of these portal sites
have pre-negotiated understanding with a set of Web services that they
provide a front-end for. For example the travel related portal sites, are
statically composed Web services that have pre-negotiated understanding
with certain airlines and hotels and broker their services. These are mostly
Business-to-Consumer (B2C) kind of Web services with some amount of
static B2B interactions happening between the Web services. A large
number of platforms and technologies are emerging and are being
standardized upon so as to enable the paradigm of Web services, for

II Chapter 2

satisfying B2C and Business-to-Business (B2B) scenarios in a uniform
manner. These standards and platforms enable creation and deployment,
description, discovery and communication amongst them.

A standard that has emerged for Web services to describe their interfaces
is Web Services Description Language (WSDL). These interfaces can then
be published at registries together with information about services' access
points (i.e., bindings), both of which are described in the WSDL which is an
XML-based description language. These WSDL descriptions are advertised
at registries. These registries may use the Universal Description, Discovery
and Integration (UDDI) technology. UDDI has been standardized as a
technology for publishing and discovering service related descriptions. After
having discovered its partners, web-services use the asynchronous
communication model to exchange documents, and Simple Object Access
Protocol (SOAP) for service invocation (which is an incarnation of remote
procedure call (RPC) in XML) over hypertext transfer protocol (HTTP).
Most services are implemented using platform independent languages such
as Java and C# on platforms like J2EE and .Net. The primary means for
enforcing security are digital signature and strong encryption with public-
private key pairs. A large number of payment mechanisms are being defined
as well.

Figure 3: Interacting Web services.

2.1 Web Services Description

In the middleware platforms that we discussed in tightly coupled
software architecture sub-section, software component interfaces are defined

Overview of Web Services 19

through Interface Definition Languages (IDL). The interfaces describe the
methods/operations that the software component supports, their expected
outputs, and the input parameters. The actual implementation just has to
follow these interfaces. This enables the interfaces to be decoupled from the
actual implementation. As Web services are envisaged as software available
on the web that other Web services or users will use, they need to be
described so that other components can easily use them without coupling the
interfaces with the implementations. Web Services Description Language
(WSDL) is an attempt to describe the Web service interfaces.

Emerging standards such as Web Services Definition Language (WSDL)
are creating flexible and generic interaction models for Web services.
WSDL enables description of Web services irrespective of the message
formats and network protocols used. For example, in WSDL a service is
implemented through a set of endpoints. An endpoint is in turn a set of
operations.

An operation is defined in terms of messages that they receive and send:

- Message - an abstract definition of data being communicated
consisting of message parts,

- Operation - an abstract definition of a method supported by the
service. Operations are of the following type namely, one-way,
request-response, solicit-response, and notification,

Service 1
URl URl

'orntl

Service 2
URl

Interface I Interface 2

Figure 4: Service abstractions built upon resources.

20 Chapter 2

- Port type - an abstract set of operations that are supported by one or
more end points,

- Binding - a concrete protocol and data format specification for a
particular port type,

- Port - a single end point defined as a combination of a binding and a
network address,

Service - a collection of related end-points bound to the same
interface.

Here's an example of a WSDL document for a StockQuote service. The
simple example demonstrates how a port type can be defined comprised of
operations that in turn are made up of messages.

<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://book.example.com/stockquote/definition
s"

xmlns:tns="http://book.example.com/stockquote/definitions"

xmlns:xsdl="http://book.example.com/stockquote/schemas"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<import
namespace="http://book.example.com/stockquote/schemas"
location="http://book.example.com/stockquote/stockquote.xsd"/>|

<message name="GetLatestTradePriceInput">
<part name="body" element="xsdl:TradePriceRequest"/>

</message>

<message name="GetLatestTradePriceOutput">
<part name="body" element="xsdl:TradePrice"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">

<input message="tns:GetLatestTradePriceInput"/>
<output message="tns:GetLatestTradePriceOutput"/>

</oDeration>

Figure 5: Example of a WSDL Web services definition for the StockQuote service.

Overview of Web Services 21

2.2 Web Services Discovery

Before Web services can interact with each other, they need to discover
other compatible Web services with which they can undertake business.

2.2.1 E-Marketplace

An E-MarketPlace is such a virtual meeting place managed by an
intermediary supplying a series of benefits to participating Web services:

- Enabling registration and discovery of Web services thus

Enabling inter Web service interaction with or without the direct
participation of the e-marketplace in the actual interaction after the
discovery.

- Enabling supply and demand mechanisms like traditional catalogue
purchasing, RFP or through more dynamic auctions, exchanges.

- Providing value added services, such as rating, secured payment,
financial handling, certification services, notification services etc;
and.

Supply-chain management through collaborative planning and
inventory handling.

Vertical and horizontal E-MarketPlaces are coming up in this regard.
VerticalNet, GlobalNetXchange, and Retailers Market Exchange are
examples targeting a specific section of the industry with key players
performing B2B transactions. Other examples like Chemdex, E-Steel and
DirectAg.com have been successful in their respective industries. Horizontal
exchanges in turn are directed at a broad range of players such as e-Bay
targeting a range of clients and businesses.

2.2.2 UDDI

Universal Description Discovery Integration (UDDI) is an initiative
supported by IBM, Microsoft, and HP. It is a group of web-based registries
(operator sites) maintained by these organizations that expose information
about a business and its technical interfaces and APIs by data structures:

- tModel,

businessEntity,

- business service,

binding template.

22 Chapter 2

It also exposes a set of APIs for inquiry and publication of information
related to Web services. The inquiry APIs enable browsing of the
information in the repository site (e.g. findbusiness) and also to drill down
(e.g. getbusinessDetail). The publication APIs are for publishers to put their
information on these repositories.

2.2.3 Web Service Inspection Language

The Web service Inspection Language (WSIL) is a complementary effort
to UDDI, for enabling discovery and aggregation of Web services. UDDI
implements service discovery using a centralized model of one or more
repositories containing information on multiple business entities and the
services they provide. WSIL provides service discovery in a decentralized
fashion, where service description information can be distributed to any
location using a simple extensible XML document format. WSIL assumes
that the service provider is already known, and relies on other service
description mechanisms such as the Web Services Description Language
(WSDL) for describing information about the services that the service
provider makes available. In that context it is similar to RDF Site Summary
(RSS) for Web services.

<?xml version="1.0" encoding="UTF-8"?>
<inspection xmlns=
"http://schemas.xmlsoap.org/ws72001/10/inspection">
<service>
<name>Stock Quote Service
</naTne>
<description
referencedNamespace="http://schemas.xmlsoap.org/wsdl/"

1ocation="http://book.example.com/stockquote.wsdl">
</description>
</service>

Figure 6: Example XML document for Inspection.

The convention is that a Web services makes available a document called
inspection.wsil at its address. The wsil file has description tagsets defined in
them that contains all of the information necessary to discover a specific
service description. The description tag uses a required attribute of
referencedNamespace to indicate the namespace of the service description.
The description also uses an optional location attribute to define a direct
reference to the service's description. A service block can have multiple

Overview of Web Services 23

description tags to provide consumers different service description options.
For instance a service could define references to a WSDL file, a UDDI
repository entry, and an HTML document.

2.3 Web Services Choreography

Web services provide a front-end for the internal business processes of an
enterprise. They help expose subsets of the internal business processes and
activities so that external business processes may compose with them. This
leads to what is termed an orchestration or choreography. The enterprise
business processes have to be defined and some of their activities have to be
linked to the WSDL operations. This requires modeling of Web service's
back-end business processes.

2.3.1 Web Services Flow Language

WSFL introduces the notion of activities and flows - which are useful for
describing both local business process flows and global flow of messages
between multiple Web services. XLANG is another Microsoft technology
that provides a mechanism for process definition and global flow
coordination.

Figure 7: Workflow between Web services.

Web services Flow Language (WSFL, 2001) conceptualizes business
processes as set of activities and links. An activity is a unit of useful work.
The links could be control links where decisions are made to follow one
activity or another, or data links where data is fed into an activity from
another. These activities could be exposed through one or more operations
that are grouped through end-points (as defined in WSDL). A service is
comprised of a set of end-points. A service provider can provide multiple

24 Chapter 2

services. Just like internal flows, global flows can be defined. Global flow
consists of plug links that link up operations of two service providers.

2.3.2 XLANG

Microsoft's XLANG defines services by extending WSDL. The
extension elements describe the behavioral aspects. A behavior spans
multiple operations. A behavior has a header and a body. An Action is an
atomic component of a behavior. The action elements could be an operation,
a delay element or a raise element. A delay element could be of types
delay For and delayUntil. The delayFor and delayUntil introduce delays in
the execution of the process to either wait for something to happen (for
example a timeout) or to wait till an absolute date-time has been reached
respectively. Exceptions are flagged through raise constructs. Raise handle
the exceptions by calling the handlers registered with the raise definition.
Processes combine actions together in useful ways. A process form could be
a sequence, switch, while. All, Pick, Context, Compensate, and Empty.

2.3.3 BPEL4WS

Business Process Execution Language for Web services combines the WSFL
and XLANG capabilities. It is an attempt to standardize business process
language. A single BPEL4WS process describes the global process that links
multiple Web services. Entry-points are defined in the BPEL4WS
specification of a global process. These entry points either consume WSDL
operations' incoming messages from input-only or input-output operations.

BPEL4WS only utilizes input-only and input-output (request-response)
operations of WSDL. BPEL4WS does not require or support output-only
(notification) and output-input (solicit-response) operations.

Input-outpuCl

Input only

Figure 8: BPEL4WS business interaction.

Overview of Web Services 25

The BPEL4WS process itself is comprised of activities. There are a
collection of primitive activities: invoking an operation on a Web service
(<invoke>), waiting to receive a message to operation of the service
(<receive>), creating a response to an input/output operation (<reply>),
waiting for some time without doing anything (<wait>), indicating an error
(<throw>), copying data from one place to another (<assign>), closing the
entire service instance down(<terminate>), or doing nothing through
(<empty>). These basic primitives may be combines through (sequence),
branching through (switch), define loops (while), execute one of the chosen
paths (pick), executing activities in parallel (flow). Within activities
executing in parallel, one can indicate execution order constraints by using
the links. BPEL4WS provides the capability to combine activities into
complex algorithms that may represent Web service to Web service
interactions.

2.3.4 ebXML

In order to enable e-business on the web, Web service to Web service
interactions need to follow certain business protocols. X-EDI, ebXML, BTP,
TPA-ML, cXML, CBL are some of the B2B technologies that have been
proposed to enable this paradigm with Web services.

In ebXML (ebXML 2001) the parties that undertake business have
Collaboration Protocol Profiles (CPP) that they register at ebXML registries.
A GUID is assigned to each CPP by the ebXML registry. Discovery
mechanisms are used to find out a compatible party's CPP. Once a party is
found they form a Collaboration Protocol Agreement (CPA). CPAs are
formed after negotiation between the parties. The intent of the CPA is not to
expose business process internals of parties but to expose the visible process
that involves interactions between parties. The messages exchanged between
the Web services may utilize ebXML Messaging Service (ebMS). The CPA
and the process specification document it references define a conversation
between parties. This conversation involves multiple Business Transactions.
A Business Transaction may involve exchange of request reply messages
The CPA may refer to multiple process specification documents. Any one
conversation will involve only a single process specification document
however. Conceptually, the B2B server at the parties is responsible for
managing the CPAs and for keeping track of the conversations. It also
interfaces the functions defined in the CPA with the internal business
processes. The CPP contains the following:

26 Chapter 2

Process specification Layer: This details the business transactions
that form the collaboration. It also specifies the order of business
transactions.

Delivery Channels: describes party's message receiving and sending
characteristics. A specification can contain more than one delivery
channels.

Document Exchange Layer: deals with processing of the business
documents like digital signatures, encryption, and reliable delivery.

Transport layer: The transport layer identifies the transport protocols
to be used the end point addresses, along with other properties of the
transport layer. The transport protocols could be SMTP, HTTP, and
FTP.

Figure 9: ebXML registry between two Web services.

WEB SERVICES MANAGEMENT

Besides the foundations of Web services that have been laid out by W3C
in terms of XML and SOAP, further standardization efforts are needed. As a
relatively new field, Web services management is subject to standardization
by various organizations including the Organization for the Advancement of
Structured Information Standards (OASIS), Distributed Management Task
Force (DMTF), Object Management Group (OMG), and the Global Grid
Forum (GGF).

Focus is on the manageability for the components of the Web Services
Architecture (WSA) as defined by the W3C. It includes a model of a Web
service as a manageable resource. The Global Grid Forum is another
standards body proposing OGSA Common Resource Model.

OASIS has a proposal in a Web Services Distributed Management
(WSDM) working group that is discussing WSDL described manageable
resources and the XML schema to complete those descriptions. The

Overview of Web Services 27

specification will also define manageability for the components of the Web
Services Architecture by the W3C.

A Grid Service is a Web service that conforms to a particular set of
interfaces and behaviors for a client. A Grid service includes entities as
hardware components, software components, complete applications or
transient items.

The Open Grid Services Architecture (OGSA) Platform (Pg. 257) defines
the core set of interfaces, behaviors, and bindings that define Grid Services.
The OGSA Platform is currently under development by the Global Grid
Forum (GGF) OGSA working group. The Web Services Resource
Framework (WSRF) effort at GGF is looking at providing the lower level
services that are required to enable OGSA.

Two standards are discussed in more detail in the following:

- WSRF, the Web Services Resource Framework and

- WSDM, the Web Services Distributed Management
standardization effort.

3.1 WSRF ~ The Web Services Resource Framework

The Web Services Resource Framework (WSRF) [WSRF 2004]
represents a comprehensive set of Web services technologies that are
standardized at the time of the writing of this book (June 2004). It can be
assumed that WSRF will continue to evolve and change.

3.1.1 History

Web services primarily emerged in the Web and XML communities
(W3C). Another stream of technology emerged from the Grid computing
community. Initially targeting interconnecting and sharing large compute
facilities, the notion of sharing compute, storage and network resources had
been broadened beyond supercomputing around the year 2001. Pioneers in
Grid computing such as Ian Foster, Carl Kesselman, Jeffrey Nick, and
Steven Tuecke formulated the vision of an Open Grid Services Architecture
(OGSA) in their paper: The Physiology of the Grid which appeared in 2002
[OGSA 2002]. OGSA was a significant extension to prior views and
definitions of Grid as presented in Foster and Kesselman's book: The Grid:
Blueprint for a New Computing Infrastructure, published in 1999 [Foster
1999].

OGSA introduced the notion of a Grid Service as unit of providing
computational, storage or transmission services. OGSA introduced a unified

28 Chapter!

view on these services from elementary, base resources up to application
services. The motivation for OGSA was defined around an increasing need
for collaboration, service-orientation, and the formation of so-called virtual
organization. Those notions were widely applicable and not bound to
scientific computing.

The Global Grid Forum (GGF) has been the organizational body for
defining Grid technology for years. With the formulation of OGSA, GGF
also made a move towards adopting more recent Web services technology,
away from prior, proprietary formats and protocols used in Grid
implementations such as the Globus Toolkit up to version 1.2. The Globus
Toolkit provided the free, open-source reference implementation of Grid
definitions and was developed by the Globus Alliance.

However, the status of Web services technologies did not appear
sufficient as infrastructure for OGSA in 2002. Major properties such as
events, security support, or addressing were not finalized. For this reason,
extensions have been introduced that were specific to "Grid Web services"
over other Web services. Those specific properties had been defined in the
Open Grid Services Infrastructure (OGSI) [OGSI 2002] and were meant to
be used only for the time until Web services standards had matured.

Web services definitions had progressed after 2002 in standards bodies,
primarily in W3C and OASIS, such that OGSI was declared obsolete at
Globusworld in January 2003 and succeeded by a new set of Web services
infrastructure definitions that were introduced as Web Services Resource
Framework (WSRF). WSRF adopted and merged the different Web services
standards and definitions into a single framework overcoming the
differences between "Grid Web services" and "non-Grid Web services".

3.1.2 Web Services and Service Oriented Architecture

WSRF adopts the definition of Web services from the W3C Web
Services Architecture working group [W3C-WSA 2003]:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAPmessages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.

This definition can be seen as currently the most comprehensive and
most widely accepted definition for Web services.

In [Burbeck 2000], the term Service Oriented Architecture is introduced:

Overview of Web Services 29

A Service-Oriented Architecture (SOA) is a specific type of distributed
system in which the agents are "services." A service is a software agent
that performs some well-defined operation (i.e., "provides a service") and
can be invoked outside of the. context of a larger application. That is,
while a service might be implemented by exposing a feature of a larger
application ... the users of that server need be concerned only with the
interface description of the service. "Services" have a network-
addressable interface and communicate via standard protocols and data
formats.

3.1.3 Stateful Resources and Stateless Web Services

Based on these definitions, WSRF build another model where it
distinguishes between stateful resources and stateless Web services, or
between stateful resources behind stateless Web services interfaces [WSRF-
Model 2004].

WSRF provides the following brief explanation of associations of state
with an interface:

1.) A stateless service implements message exchanges with no access
or use of information not contained in the input message. A simple
example is a service that compresses and decompresses documents, where
the documents are provided in the message exchanges with the service.

2.) A conversational service implements a series of operations such
that the result of one operation depends on a prior operation and/or
prepares for a subsequent operation. The service uses each message in a
logical stream of messages to determine the processing behavior of the
service. The behavior of a given operation is based on processing
preceding messages in the logical sequence. Many interactive Web sites
implement this pattern through use of HTTP sessions and cookies.

3.) A service that acts upon stateful resources provides access to, or
manipulates a set of logical stateful resources (documents) based on
messages it sends and receives.

3.1.3.1 Stateful Resources

The term state can encompass many different aspects of a computation or
a computer system. WSRF describes a stateful resource [WS-Resource
2004] by:

- having a specific set of state data expressible as an XML document;

- having a well-defined lifecycle; and

- known to, and acted upon, by one or more Web services.

30 Chapter 2

Examples of system components that may be modeled as stateful
resources are files in a file system, rows in a relational database, and
encapsulated objects such as Entity Enterprise Java beans. A stateful
resource can also be a collection or a group of other stateful resources.

Multiple instances of a stateful resource type may exist. An instance of a
stateful resource may be created via a Web service referred to as a stateful
resource factory. A stateful resource is defined by a single XML Global
Element Declaration in a given namespace. This Global Element Declaration
defines the type of the root element of the resource's XML document and
hence the type of the stateful resource. When a stateful resource instance is
created, it may be assigned an identity by the entity that created it.
Applications using the resource may assign the resource additional identities.
A specific form of stateful resource identity may be used privately by one or
more Web service implementations to identify the stateful resource used in
the execution of a message exchange.

3.1.3.2 The Implied Resource Pattern

Another concept in WSRF is the Implied Resource Pattern defining how
stateful resources are referred to by Web services clients. An Implied
Resource Pattern describes a specific kind of relationship between a Web
service and one or more stateful resources. The implied resource pattern
refers to the mechanisms used to associate a stateful resource with the
execution of message exchanges implemented by a Web service. The term
implied is used because the stateful resource associated with a given
message exchange is treated as an implicit input for the execution of the
message request. The requestor does not provide the stateful resource
identifier as an explicit parameter in the body of the request message.
Instead, the stateful resource is implicitly associated with the execution of
the message exchange. This can occur in either a static or a dynamic way. A
stateful resource is associated with the Web service statically in the situation
where the association is made when the Web service is deployed. A stateful
resource is dynamically associated with the Web service when the
association is made at the time of a message exchange. In the dynamic case,
the stateful resource identifier also designates the implied stateful resource
and may be encapsulated in the WS-Addressing endpoint reference (see
section on WS-Addressing below) used to address the target Web service at
its endpoint.

The term pattern indicates that the relationship between Web services
and stateful resources is embodied by a set of conventions on existing Web
services technologies, in particular XML, WSDL, and WS-Addressing.

Overview of Web Services 31

3.1.4 WSRF Definitions

At the time of this writing, WSRF includes the following base
definitions:

WS-Resource and WS-Addressing,

WS-Resource Properties,

WS-Resource Lifecycle,

WS-Notification,

WS-Service Group, and

- WS-Base Faults.

Those definitions are expected to continue changing. The following
selection provides some more detail on those definitions.

3.1.4.1 WS-Resource and WS-Addressing

When a stateful resource is associated with a Web service and
participates in the implied resource pattern, WSRF refers to the component
resulting from the composition of the Web service and the stateful resource
as a WS-Resource. A WS-Addressing endpoint reference is an XML
serialization of a network-wide pointer to a Web service. This pointer may
be returned as a result of a Web service message request to a factory to
create a new resource or it is returned from the evaluation of a search query
in a registry, or as a result of some other application-specific request.

WS-Addressing standardizes the endpoint reference construct used to
represent the address of a Web service deployed at a given network
endpoint. An endpoint reference may contain, in addition to the endpoint
address of the Web service, other metadata associated with the Web service
such as service description information and reference properties, which help
to define a contextual use of the endpoint reference. The reference properties
of the endpoint reference play an important role in the implied resource
pattern. The endpoint reference contains information that expresses the
implied resource pattern relationship between the Web service and the newly
created stateful resource.

The endpoint reference contains two important components:

- The wsa:Address component refers to the network transport-specific
address of the Web service (often a URL in the case of HTTP-based
transports). This is the same address that would appear within a port
element in a WSDL description of the Web service.

- The wsa:ReferenceProperties component may contain an XML
serialization of a stateful resource identifier, as understood by the

32 Chapter 2

Web service addressed by the endpoint reference. The stateful
resource identifier represents the stateful resource to be used in the
execution of the request message.

The XML serialization of the stateful resource identifier uses a service-
specific XML element to represent the stateful resource identifier
information that is opaque to the service requestor. The service requestor's
applications should not interpret the contents of the stateful resource
identifier. The stateful resource identifier is meaningful only to the Web
service, and is used by the Web service in an implementation-specific way to
identify the WS-Resource related stateful resource needed for the execution
of the request message.

From the point of view of the service requestor, the endpoint reference
represents a pointer to the WS-Resource, composed of a Web service that
may be further constrained to execute message exchanges against a specific
stateful resource. It is assumed that the service requestor understands that the
endpoint reference refers to a WS-Resource.

3.1.4.2 WS-Resource Properties

The WS-Resource Properties specification [WS-ResourceProperties
2004] defines the type and values of those components of a WS-Resource's
state that can be viewed and modified by service requestors through a Web
services interface. This implies that a WS-Resource has an XML resource
property document defined using XML schema. It also implies that a service
requestor may determine a WS-Resource's type by retrieving the WSDL
portType definition by standard means, or a service requestor may use Web
services message exchanges to read, modify, and query the XML document
representing the WS-Resource's state. The underlying state may be in any or
multiple formats, and in a single or multiple locations.

3.1.4.3 WS-Resource Lifecycle

The lifetime of a WS-Resource is defined as the period between its
creation and its destruction. The actual mechanisms by which a specific WS-
Resource is created and destroyed are implementation-specific. WSRF
addresses the following three aspects of the WS-Resource lifecycle:

1. WS-Resource Creation - through the use of a WS-Resource factory,

2. WS-Resource Identity - the assignment and use of the stateful
resource identifier, and

3. WS-Resource Destruction - the end of existence of a WS-Resource.

Overview of Web Services 3 3

WS-Resource Creation. A WS-Resource can be created by some
external mechanism, or through the use of a WS-Resource factory. A WS-
Resource factory is any Web service capable of bringing a WS-Resource
into existence by creating a new stateful resource, assigning the new stateful
resource an identity, and creating the association between the new stateful
resource and its associated Web service. The response message of a WS-
Resource factory operation contains a WS-Resource endpoint reference
containing a stateful resource identifier that refers to the new stateful
resource. A factory may also place the WS-Resource endpoint reference into
a registry for later retrieval. There are many types of Web services that may
return WS-Resource endpoint references in their response messages.

WS-Resource Identity. WSRF describes the role and use of WS-
Resource identity from two perspectives:

1. from the private perspective of the WS-Resource
implementation, and

2. from the public perspective of a service requestor to whom an
endpoint reference to a WS-Resource is provided.

Each stateful resource has at least one form of identity that uniquely
identifies a stateful resource component within the WSResource
composition. This identity may be used as a "stateful resource identifier"
which has a specific role as a component in a reference to the WS-Resource.
The stateful resource identifier is placed into the reference properties portion
of a WSAddressing endpoint reference. A WS-Resource endpoint reference
can then be made available to other entities in a distributed system, which
can subsequently use that endpoint reference to direct requests to the WS-
Resource.

WSRF defines an identity as a portable, namespace-scoped value.
Portability is important as it allows one application to pass the identity to
another. Namespace scoping is important since it allows disambiguation of
multiple identities that may originate from different sources.

WS-Resource Destruction. A requestor that sends a message request to
a WS-Resource factory that causes the creation of a new WS-Resource will
typically only be interested in that new WS- Resource for some finite period.
After that time, it should be possible to destroy the WS-Resource so that its
associated system resources can be reused.

WSRF does not define specific interfaces supporting the destruction of
WS-Resources. It describe only general requirements such as a service
requestor may use the appropriate WS-Resource endpoint reference to send a
destroy request message to the Web service when this Web service supports
a destroy operation. The receipt of the response to the destroy request

34 Chapter 2

message can be used for synchronization between the service requestor and
the Web service receiving the destroy message. Upon receipt of the response
message, any further message exchanges with the service will result in fault
messages.

The WSRF definition also mentions message exchanges for establishing
and renewing scheduled destruction times on WS-Resources for time based
destruction when a WS-Resource cannot be destroyed explicitly.

3.1.4.4 WS-Notification

Another family of specifications is called WS-Notification [WS-
Notification 2004]. It defines a general, topic-based mechanism for publish
and subscribe (pub/sub) interactions building on the WS-Resource
framework. The basic approach is to define mechanisms and interfaces that
allow clients to subscribe to topics of interest, such as resource property
value changes for a WS-Resource. From the perspective of WS-Notification,
the WS-Resource framework provides useful building blocks for
representing and structuring notifications. From the perspective of the WS-
Resource framework, the WS-Notification family of specifications extends
the utility of WS-Resources by allowing requestors to ask for asynchronous
notifications sent by to the subscriber when changes to resource property
values occur.

WS-Notification includes three sub-definitions:

- WS-BaseNotification,

- WS-Topics, and

- WS-BrokeredNotification.

WS-BaseNotification describes the basic roles, concepts, and patterns
required to allow a subscriber to register interest in receiving notification
messages from a notification producer. A notification can concern a change
in the value of a resource property, some other internal change in the state of
the notification producer, or some other situation within the environment
that can cause a notification to be sent. A subscriber registers interest in
receiving notification messages on one or more topics by issuing a subscribe
message. In response, the subscriber receives a WS-Resource endpoint
reference to a "subscription" WS-Resource. The subscription WS-Resource
models this relationship between the subscriber and the producer. It uses
WS-ResourceProperties and WS-ResourceLifetime to manage this
relationship.

WS-Topics presents an XML description of topics and associated meta
data. Topics are a mechanism known from other publish-subscribe systems
such as Java Messaging Service (JMS) for organizing notification messages

Overview of Web Services 3 5

so that subscribers can conveniently understand what types of notification
are available for subscription. Topics can be organized hierarchically. One
topic can be further decomposed with child topics. Topics are scoped by
namespaces similarly like XML types and elements are scoped by XML
namespaces.

WS-BrokeredNotification defines the interface to a NotificationBroker
that implements an intermediary service to manage subscriptions for other
entities in the system that produce notification messages.

3.L4.5 WS-Service Group

The WS-ServiceGroup specification defines means for representing and
managing heterogeneous by-reference collections of Web services. This
specification can be used to organize collections of WS-Resources, for
example to build registries, or to build services that can perfonn collective
operations on a collection of WS-Resources. The WS-ServiceGroup
specification can express service group membership rules, membership
constraints, and classifications using the resource property model from WS-
ResourceProperties. Groups can be defined as a collection of members that
meet the constraints of the group and that are expressed through resource
properties. The WS-ServiceGroup specification also defines interfaces for
managing the membership in a service group. The interfaces defined by WS-
ServiceGroup are composed with other Web services interfaces, which
define more specialized interaction with the service group and with the
services that are members of the service group. For example, specialized
interfaces may provide other means of querying the contents of the service
group, and for performing collective operations across members of the
service group.

3.1.4.6 WS-Base Faults

The WS-BaseFaults specification defines a base fault type for returning
faults occurring during a Web services message exchange. While there is
nothing specific to WS-Resources in this specification, it is used by all other
WS-Resource framework specifications in order to bring consistency to fault
handling including consistent reporting of faults.

3.L5 Summary of WSRF

The WS-Resource Framework defines a set of Web service specifications
and conventions designed to standardize representation of stateful resources
in a distributed environment. This framework identifies and standardizes the
patterns by which state is represented and manipulated, such that a Web

36 Chapter 2

service can describe the stateful resources to which it provides access, and a
service requestor can discover the type of this pairing of Web service and
stateful resource and use standardized operations to read, update, and query
values of this state, and to manage its lifecycle. The definition of the WS-
Resource framework facilitates the construction and use of interoperable
services, by enabling different service providers and service consumers to
describe, access, and manage their stateful resources in standard ways.
WSRF introduces support for stateful resources without compromising the
ability to implement Web services as stateless message processors. WSRF
also addresses issues of renewable references, grouping, notification, and
fault reporting.

As mentioned in the introduction to WSRF, Web services standards have
not been finalized at the time of the writing of this book in June 2004.
Changes, even significant changes, may occur.

Web services standardization activities are not bound to WSRF alone.
Web services standardization remains a dynamic area with many parties and
activities involved. Basic XML technology and protocols (SOAP) continue
being defined by W3C. OASIS is another important standard's body. At the
time of the writing of the book, a discussion is going on to move
standardization of WSRF from GGF to OASIS. OASIS is also the body for
standardizing the Web Services Distributed Management (WSDM),
specifically targeting management aspects of Web services. The Distributed
Management Task Force (DMTF) has been focusing on models and
developed the standard for the Common Information Model (CIM), which
recently received more attention around the move towards model-driven
operation. All these activities show that Web services standardization
remains a dynamic area with many parties and many activities involved.

3.2 Web Services Distributed Management (WSDM)

The OASIS workgroup on web service distributed management is
looking at a framework for management of Web services and other
computing resources through Web services. Web Services Management
Framework (WSMF) is a proposal that has been submitted to WSDM. The
intent of the proposal is to provide a management model that is based on
managed objects, their properties and operations, and their relationships.
Managed objects provide management capabilities by implementing
management interfaces which are described using WSDL. Hence
management interfaces define management Web services. Management
clients can provide management information through an external standard
way without having to expose their internal implementations.

Overview of Web Services 3 7

Additionally, they can provide the management capabiHties by
implementing what they can support and gradually augmenting their list as
their management capabilities grow.

A manager role can use this framework for:

• discovering the management WSDL definitions

• discovering the list of the managed objects

• sending and receiving notifications

• monitoring, auditing, and controlling various aspects of managed
objects by utilizing the supported management operations

• providing services to further aid the complex interactions in which
the Web services engage

Currently there is no standard way for managing Web services. What
management vendors can offer is instrumentation at the SOAP end points
and intermediaries (e.g. SOAP servers, UDDI servers, etc.). This will
provide information about the Web services as they use these applications.
However, this management view is incomplete and lacks critical information
on the state of the Web service as it is executing and messages are traveling
between various end points and consumers. For such information, Web
services need to become inherently manageable. A minimal set of interfaces
are required that describe:

• Service: A managed representation of a Web service resource.

• Conversation: A service's view of the state associated with a set
of related messages.

• Execution Environment: A managed representation of a Web
services Execution Environment.

• Intermediary: A managed representation of a SOAP
intermediary.

These through Web services managed objects also share a basic set of
relationships:

• Containment: between execution environment and services, and
between services and conversations.

• Dependency: between services, between intermediaries, and
between services and intermediaries.

• Correspondence: between conversations.

As new capabilities and standard use models for Web services are
developed and adopted, their users (preferably their creators) can use the
model to define additional managed objects, relationships, and interfaces to
add manageability support to their model.

3 8 Chapter 2

4. PLATFORMS FOR WEB SERVICES

Web services platforms provide the libraries and support for executing
Web services. Platforms have gone through change over the course of time.
We can classify the Web service platforms into different generations to
understand the progression of growth in them:

- First Generation - HTML/CGI: mostly static content in HTML
pages, HTML FORMS for simple choices and dialogs, and the CGI
(Common Gateway Interface) to connect web servers to application
programs, mostly Perl or Shell scripts.

Second Generation - Java: dynamic generation on server side of
HTML pages, user session support, the Java servlet interface
became popular to connect to application programs,

- Third Generation -further developed environments appeared: J2EE
as foundation for application servers.

- Fourth Generation - XML Web services platforms: characterized by
the introduction of XML and WSDL interfaces for Web services
with SOAP-based messaging, and a global service infrastructures for
service registration and discovery emerged - UDDI, WSIL

Fifth Generation - dynamic Web services aggregation, characterized
by flow systems, business negotiations, agent technology, etc.

Technically, Web services have been built according to a pattern of an n-
tier architecture that consists of: a front-end tier: firewall (FW), load
balancer (LB), a web-server tier (WS), an application server (AS) tier, and a
backend tier for persistent data, or the database tier (DB).

4.1 First Generation: CGI and Perl

The World Wide Web has facilitated the emergence of HTML pages on
user's web browsers. Initially the web pages had mostly static HTML
content. Passive information services could be built that provided users with
the only capability of navigating though static pages. However, FORMS was
supported by HTML from the very beginning that allowed users to enter text
or select from multiple choices menus. FORMS were treated specially by the
web server. They were passed on to an interface, CGI - the Common
Gateway Interface, behind which small applications, mostly Perl or Shell
scripts, could read the user's input, perform corresponding actions, and
create an HTML page that can be visualized in the user's browser. This

Overview of Web Services 39

primitive mechanism enabled a first generation of services in the web
beyond pure navigation through static content. Some of the services still use
these technologies today.

4.2 Second Generation: Java

With the proliferation of the web and the need for richer set of services
such as online shopping or travel booking, the initial means to build Web
services quickly proved to be too primitive. Java appeared as language of
choice for Web services and brought certain interactive capabilities with it.
Servlets provided a better interface between the web server and the
application.

Technology was introduced to support the dynamic generation of HTML
pages at the server side: ASP (Active Server Pages) by Microsoft, JSP (Java
Server Pages) by Sun Microsystems, or PHP pages in the Linux world
enabled the separation of presentation, the appearance of pages in browsers,
from content data. Since user identification was critical for business services,
user login and user sessions were introduced. Applications were becoming
more complex, and it turned out that there was a significant overlap in
common functions needed for many services such as session support,
connectivity to persistent data bases, security functions etc.

<^rvle^>

l^pplicxiftioii ^^wi»iLr\

Figure 10: Example of Java-based Web service.

4.3 Third Generation: Richer Development and Run­
time Environments

As people developed Web services they realized that there were a basic
set of services that were common across applications. This led to
specification of standard set of libraries in Java. A cornerstone of these
environments became J2EE. J2EE (Java 2 Platform, Enterprise Edition) is a

40 Chapter!

Java platform designed for enterprise-scale computing. Sun Microsystems
(together with industry partners such as IBM) designed J2EE to simplify
application development for Web services by decreasing the need for
programming through reusable modular components and by providing
standard functions such as session support and database connectivity.

Application Server: J2EE is comprised of a set of libraries used by
application programs performing the various functions. Developers of these
Web services still had to assemble all the pieces, link them together, connect
them to the web server, and manage the various configurations etc. This led
to the creation of pre-assembled packages that could easier be deployed on a
variety of machines. These pre-packaged set of libraries have been termed
application server. They significantly reduced the amount of configuration
work during service deployment so that service developers could spend more
time on creation of the actual service and the business logic of the service.
Most application server are based on J2EE technology. Examples are BEA's
WebLogic environment, IBM's WebSphere suite, Sun's iPlanet Application
Framework or Oracle's 9/ application server.

4.4 Fourth Generation: Web Services Frameworks

Most of the previous generation Web services were B2C kind of services
that were focused on the customer. It turned out that to enable Web service
to Web service interactions, it was necessary to have a set of standards that
will enable seamless interactions between them. HTML content was being
parsed by the browsers in different ways and it was necessary to have a
standardized way of expressing and parsing information. XML provided
means of expressing content and semantics in schemas. The Web services
community decided to use XML for not only specifying content but also to
express standards. XML is being pervasively used for messaging (SOAP)
and for Web service interface descriptions (WSDL). XML enhancements
were also added to J2EE and application servers. XML turned out to be a
major differentiator between Web services platforms of the 3*̂^ and the 4̂ ^
generation in this classification.

UDDI (Universal Description and Discovery Interface) appeared a
standard for enabling service registration and discovery. It is a set of
registries that are maintained by IBM, HP, and Microsoft. Its goal is to
enable companies and individuals to find one another on the web in a much
more structured and classified manner than it is possible through search
engines. Microsoft, IBM, and Ariba spearheaded UDDI. However, UDDI
has not taken off in a big way. People have also proposed the use of Web

Overview of Web Services 41

Service Inspection Language (WSIL) as means of distributed discovery and
introspection.

Two major platforms are currently offered that explicitly aim for further
Web services interaction and integration: Sun Microsystems' SUN ONE
(Open Net Environment) and Microsoft's .NET.

SUN ONE: SUN ONE' is a platform for Web services. Its architecture is
build around a DART model: Data, Applications, Reports, and Transactions.
It supports major standards like: XML, SOAP, J2EE, UDDI, LDAP, and
ebXML. The architecture is comprised of three product lines: the iPlanet
Application Framework (JATO), Sun's J2EE application framework for
enterprise Web services development, the Solaris Operating Environment,
and the Forte Development tools.

Microsoft .NET: Microsoft's .NET platform intends to provide Web
service platforms and a set of technologies that will enable creation and
interaction with Web services. With Microsoft .NET, Web services'
application code is built in discrete units, XML Web services, that handle a
specified set of tasks. Because standard interfaces based on XML simplify
communication among software, XML Web services can be linked together
into highly specific applications and experiences. The vision is that the best
XML Web services from any provider from around the globe can be used to
quickly and easily create a needed solution. Microsoft is using C# as its
language of choice for development and provides a set of tools like Visual
Studio .Net for enabling creation of Web services.

5. PUTTING IT ALL TOGETHER

A typical e-business infrastructure would comprise of large number of
business processes. As the intention of an e-business is to undertake business
on the web, they will also need mechanisms that enable customers to access
their services through the Internet. Web services have become a well-
accepted way of putting e-businesses on the web so as to enable users (either
humans or other Web services) to use them. According to many market
research firms, it is likely that, before the year 2005, many of the companies'
offerings will be available as Web services, and that large corporations will
deploy tens or hundreds of Web services. These Web services have to be
interfaced with the internal business processes to receive, fulfill and deliver
orders. A complex infrastructure is usually a reality in an e-business.

In order to explain, how these varying technologies may be put together, let
us consider an example scenario. We assume that business partners provide
Web services in order to enable dynamic interactions with each other.

42 Chapter 2

Parts upplier

[ChipSupply]

PCMaker
Assembly Dept.

[Assembly]

Delivery
Provider

[Delivery]

PCMaker
Sales Dept
[PCSupply] PCBuyerl

PCBuyer2

PaymentProvider

[PaymentService]

Figure 11: PC purchase scenario.

Individual Web services are implemented as business processes that are managed by business
process management systems.

Figure 11 summarizes overall layout of our example scenario. The names of
Web services provided by participating businesses are shown in brackets.

The scenario includes the following participants:

• Clients: PCBuyerl and PCBuyer2 are two example clients that purchase
PCs from a vendor (PCMaker). We assume that some clients, such as
PCBuyerl, are capable of using the Web service provided by their
vendors in order to submit their purchase orders; whereas, some other
clients, such as PCBuyer2, prefer to submit their orders through fax or
phone calls.

• Providers: PCMaker Sales Department provides the Web service
"PCSupply" in order to allow its clients to interact with itself
electronically. This department also acts as client and uses Web services
of various service providers and product suppliers in order to satisfy its
own clients' orders. In our scenario, PartSupplier, Deli very Provider, and
PaymentProvider are three external service providers, and PCMaker
Assembly Department is an internal service provider.

There may be many more providers, customers, and internal departments
involved in such a scenario, but we list only few for simplicity.

The PCMaker.com e-business is shown in Figure 12. This infrastructure
is set up by PCMaker.com that receives orders from companies/humans
interested in buying PCs. It has internal business processes like user
authentication, PC manufacturing, preparation of invoices etc. For some of

Overview of Web Services 43

the PC order parts, it needs to contact its supplier and similarly uses a
shipping company to ship the PCs it makes. In order to do business on the
web it needs to have a Web service that enables other users to access its e-
business. The PCMaker.com Web service has a Web service that has
operations, namely Login, Pricequote, Orderrequest, Sendinvoice, and
Sendshipment. It also has other operations, namely Orderparts and
Shiporder.

Dr6^ Porh

login

Success/'Fa »!ur©

• ShtpmaoLCteme
ohipm©nt_R©»::vd

Figure 12: Business processes and Web services in PCMaker.

Figure 13 shows the definition of a sample business process that runs at
the back-end of Price_quote operation. The process is initiated when a
GetPriceQuote (PQ) request is received from a client. The process proceeds
in three parallel branches to collect quote information from three business
partners, then calculates the total cost, and finally sends the total cost to the
client. Similarly, there could be many other business processes implemented
to handle client requests at the back-end of a Web service.

quote to client Done

Calculate delivery cost

Figure 13: Definition of a sample business process.

Behind all the logical business processes, Web services and operation as
described above, the e-business infrastructure needs hardware, software and
humans that support the Web service infrastructure. For example, it would
require web sites, web server farms, applications servers (J2EE, .Net) and
business processes execution platforms (e.g.. Process Manager, MQSeries,
Web Method).

E-business

Business Process

••^l i i i i i i i i iK

Figure 14: Layers from IT infrastructure to E-business.

Web services being critical to an e-business infrastructure it is important
to manage them while undertaking e-business management. Since Web
services depend on the IT infrastructure, management of Web services also
requires that the underlying IT infrastructure be managed. Once the metrics
collected at the IT infrastructure, Web services and business process layers
are correlated the management data may be used to either present views to
the business managers/analysts through consoles or may be used for
managing the enterprise (intra-enterprise) and its relations with its customers
(CRM) and other enterprises (inter-enterprise management).

Overview of Web Services 45

SUMMARY

Web services are emerging as the de-facto mechanism of making
services available on the web. In order to enable this scenario a set of
standards are being worked upon. These standards range from those related
to describing the service (WSDL), discovering the service (UDDI, WS-IL)
to business processes that drive the message exchange (WSFL, XLANG,
BPEL4WS, ebXML). In order to manage Web services it is thus important
not only to understand how these different technologies fit together but also
the effect that they have on the current enterprise stack.

Chapter 3

APPLICATION MANAGEMENT AND WEB
SERVICES

1. INTRODUCTION

Web Services may be thought of as specialized applications. The body of
work that exists in traditional application management is thus quite relevant
to the domain of web service management in general. It is thus important to
understand the body of work that exists in traditional application
management.

Effective application management has been traditionally the main goal of
IT managers and IT support organizations. Varied tools and technologies are
typically used to bear upon application management. Various criteria can be
applied for classifying the space of application management. The stages of
an application life cycle, for instance, can be used for this purpose.

An application life cycle is understood as the sequence of defined stages
through which an application transitions over its existence. An application
life cycle comprises of stages of application creation (production),
application deployment (introduction into the system- installation and
configuration), operation of the application (usage), maintenance (upgrade,
improvements), and the final stage of application phase-out (leaving the
system). All these stages and transitions are typically quite complex and
require a variety of management processes.

47

48 Chapters

Management per se is not limited to managing networks or system
management, as it is often described in technical literature. Application
management inherently straddles across "non-computational" domains such
as people or processes as is the case in stages of application development,
deployment, and operation. Only few areas are covered by management
systems and automated support of management operations. Human beings
executing management tasks and operations still dominate application
management. Multiple examples exist in support of this hypothesis. The
development process of an application, and the developers themselves, need
to be managed during the application creation stage. During operation,
operators or administrators perform most management tasks, assisted by
computerized systems that collect, aggregate and present data to them. What
is often referred to as application management in most cases only addresses
the areas where computer-supported management systems are used, mostly
during operation, monitoring and data collection. Event reporting and
correlation are typical tasks management systems perform today. At the end,
data and alarms are displayed to the operators behind a management console
who take decisions and perform corrective actions.

Reducing the discussion of application management to only those areas
where management tasks are computer assisted does not reach far enough
for a comprehensive overview of application management across the entire
application life cycle, as introduced in greater detail in section 2.

For this reason, a generalized view to application management and
management processes is introduced in section 3 that encompasses all
aspects of application management through all stages of an application life
cycle. A uniform view to management across the different areas and aspects
related to application management is provided. Such a uniform view allows
bridging the gap between computer assisted management processes and
tasks that rely on human involvement and execution.

Subsequent sections then discuss management-related aspects in each
stage of the application management life cycle in more detail.

2. APPLICATION LIFE CYCLE

Application life cycle is understood as the sequence of stages through
which an application transitions during its existence. The general model of
an application life cycle is shown in Figure 15.

The outer cycle illustrates the application passing through the stages of
creation, deployment, operation, maintenance, and final phase-out. The inner

Application Management and Web Services 49

cycle between deployment, operation and maintenance characterizes the
main stages during which an application is used. In most cases, maintenance
cannot be done directly during operation. Maintenance thus is shown as a
separate stage after operation and typically involves deployment and
upgrade of components.

,^.^'" ifemte, continue
v' creat|pn

initiate.

pPhase-out:
|- preserve and

migrate application]
states.

jCreation:
design,
implementation,

\- integration.

release

update

.:^f!''

introduce
update

j^-

uDepIoyment:
j - resource provisioning

installation,
configuration.

start

phase-out

Maintenance:
j - upgrade,

versioning.

jOperation:
use resources,
interact with users,
other applications.

stop

Figure 15: General model of an application life cycle.

Applications are defined, designed, implemented and integrated with
other applications during the Creation stage. Software development
processes characteristic of this stage are requirement analysis, architecture
and design, implementation, quality assurance and iterations upon these
processes. Creation leads to a new application or leads to a newer version of
an existing application. After an application leaves the creation stage for
deployment, the creation process typically involves continued improvement
of the application, independent of the releases that have been moved to
deployment and use. The aspect of continued application creation
(development) after releases is shown by the arrow pointing from creation
back to the creation stage in Figure 15. Subsequent versions occurring as
results of continued creation will update existing applications during their
maintenance stages. This is shown by the arrow leading from creation stage
to maintenance in Figure 15.

50 Chapters

At Deployment stage, the application is introduced in its target
environment after release. For this purpose, resources for operating the
application must be acquired and provisioned. Subsequently, application
software and data need to be installed and configured on those resources.
The deployment stage leaves the application in a ready-to-go status.
Maintenance cycles also typically require installation and configuration of
new application components. For this reason, an arrow from maintenance to
deployment is shown in Figure 15.

The main stage of an application is Operation. At this stage, the actual
function of the application is performed, the application is in use. Resources
are used, application processes are active, and interactions with users or
other applications occur. Operation is also the main stage of application
management and the main area where computer-supported management
systems are in use.

Upgrades are performed during the Maintenance stage. Some
maintenance functions can be performed immediately during operation, but
most of them require replacement of hardware or software components and a
temporary shutdown of the application.

Transitions between Operation, Maintenance, and Deployment must be
obeyed carefully since they occur while the application is available to users.
Maintenance cycles often require a shutdown of an application and its
temporary unavailability. Thus, scheduled maintenance cycles are part of the
application life cycle management where users are informed in advance
about planned shutdowns. When scheduled maintenance down time is not
acceptable for applications, temporary application substitutes must be
provided.

At the end of the application lifetime, the Phase-out stage migrates
application into following generations of applications or into archives.

3. PROCESSES IN APPLICATION MANAGEMENT

As discussed in the introduction, reducing application management to
processes and tasks that are assisted by management system (which are
themselves applications that underlie the same life cycle pattern) would not
reach far enough for a comprehensive overview of application management
in all its stages of the application life cycle.

For this reason, a generalized definition of application management is
presented in combination with classifying taxonomy that subsequently will

Application Management and Web Services 51

be applied to the stages of an application life cycle for discussing application
management.

3.1 Generalized View on Application Management

Management in general is the set of tasks (process), better still an entirety
of processes^ that is established to assure that a managed domain meets its
expectations in a controlled and predictable manner. Expectations need to be
defined and formalized for this purpose. Appropriate management processes
must be identified with defined responsibilities in the managed domain.
Examples of managed domains include components, entire systems, and
processes. Managed domains can also include people such as employees,
developers, operators, or entire organizations.

A management process, or typically a variety of management processes,
accompany a managed domain and interacts with it as shown in Figure 16.

managed domain:

component
system
process, inch
mgmt. process
person
organization...

mana
pre

^ ask

report ^

corrective

action ^

geme
)cess

r

Figure 16: Management process accompanying a managed domain.

In order to fulfill its tasks, a management process needs to interact with
the managed domain in a defined manner. Management protocols implement
those interactions. Management protocols typically have two purposes:

• The first purpose of a management protocol is the observation of the
data collected from probes or sensors by performing measurements
and receiving notifications about events and other conditions that
have occurred in the managed domain.

This input data received from the managed domain, in combination
with policies representing the management goals and objectives,
provide the basis for assessing conditions in the managed domain, and
to determine whether it operates within the defined scope of expected

Management processes need not be confused with the business processes. Management
processes are workflows that are used to perform application management activities.

52 Chapter 3

behavior or not. For this purpose, observed information must be
compared with patterns that define the expected behavior for the
managed domain. When deviation is determined, a decision about
corrective action in the managed domain must be made.

• The second purpose of a management protocol is to transfer
instructions for corrective actions to control points in the managed
domain. The control points in turn execute instructions actuating
corrective actions in the managed domain.

A management process needs to be created, introduced, executed,
maintained, and finally be phased-out just like any other application. This
aspect is discussed in more detail in the following section. Subsequent
sections then show selected aspects of life cycle stages of management
processes:

- definition of a management process at creation stage (section 3.3),

instrumentation of a managed domain at deployment stage (section
3.4), and

- execution of a management process during operation (section 3.5).

3.2 Management Process Life Cycle
Management is defined as process or an entirety of processes with their

own life cycle(s), which defines, when management processes enter a
domain, when they disappear and though which stages they transition during
existence.

initiate

[Non-existing

jCreation:

j- define metric,

ir..defm.e..cQn]tr.o.ls„.

introduce

^ "^M^,

update

'^S. IMaintenance:

phase-out 1- adapt,

j- upgrade.

iPhase-out:

preserve states, -

.ar.d]ii.Y.e..

re-introduce,
update

jDeployment:

j- instrument domain,

\- establish connection.

i start

jOperation:

[• observe,

h react.

life cycle

management
process

^ ask

report

corrective

ation

Figure 17: Management process life cycle that is subject to life cycle management itself

Application Management and Web Services 53

In principle, the same life cycle model shown in Figure 15 for
applications applies to management processes. For the discussion here, three
selected aspects of a management process life cycle are discussed: definition
of a management process, instrumentation of the managed domain, and
execution of a management process.

Other life cycle stages of maintenance (adopting management processes
to changing conditions), and phase-out (defined termination of management
processes) apply as well to management processes but are not further
discussed here.

Figure 17 also shows the aspect that management process life cycle is
also subject to management process in order to assure defined behavior.

3.3 Definition of a Management Process
(at Creation Stage)

A management process usually follows a certain pattern of steps during
its existence. The steps a management process performs are defined during
the creation stage of the management process life cycle.

The main aspects of defining a management process are:

1. Define the objective for and supportive information needed by the
management process. The objective represents the goal of management
or the responsibility of the management process. Supportive information
provides the input for assessing whether a managed domain is within or
not within the bounds of expected behavior. Individual aspects are:

a. Define the "expected behavior" in the managed domain for
which the management process is responsible.

b. Derive a formalized information aggregate that represents how
the goal of the management process is expressed in measurable
and observable data - called metrics. These metrics are used to
assess the managed domain whether it is within or not within the
bounds of expected behavior.

c. Derive measures that provide input for the metrics.

d. Define data collection points and event detectors, the data and
event paths, data aggregation and event correlations in the
managed domain for obtaining the measures for these metrics.

e. Define the assessment function for these metrics that assesses
measures against the formulated metrics.

2. Define the steps of the management process that are performed in order
to keep a managed domain within expected behavior:

54 Chapter 3

a. Derive summarize metrics from the base set of metrics, which
can be assessed

b. Define the policy based on which decisions about corrective
actions or notifications to higher-ordered management processes
are taken.

c. Define notifications and corrective actions that need to be taken
in order to adjust behavior in the managed domain when
deviation from expected behavior has been assessed.

d. Define control points in the managed domain that implement
corrective actions.

Define the management protocol.

Define when and how frequently the management process is performed.
What initiates the management process? Several triggers exist: fixed
scheduled times, events occurring in the managed domain, instructions
from higher-ordered management processes, see section 3.6 on
hierarchical management processes.

3.4 Instrumenting the Managed Domain
(at Deployment Stage)

In order to be "manageable", the managed domain must be instrumented
with data collection and event detecting probes, and with actuators
performing corrective actions in the management domain when instructed by
the management process. Instrumentation of a managed domain is a main
task during deployment stage of a management process life cycle.

jmanaged domain

datk collection probes

Q. and
O

Q ^ \ evdnt detectors

management
process

ask

D-
D"

D"

rt'"e'"'^iS?lgement ,,

Protocol

control interface

report

corrective
I

action T

Figure 18: Instrumentation in the managed domain with proxy for the management protocol.

Data collection probes and event detectors as well as actuators are
usually not directly connected with the management process. Intermediaries
(or proxies) are often introduced in a managed domain for decoupling

Application Management and Web Services 55

instrumentations in the managed domain from specific management
protocols. Proxies then perform the protocol with the management process.
Instrumentations are usually also not capable of performing the full
management protocol.

A managed domain may support different management protocols by
introducing different proxies. Updating the proxy can accommodate changes
and evolution in management protocols, and vice versa, only updating
proxies can make changes in instrumentations transparent to management
protocols and management processes. All these advantages have made
management proxies fairly prevalent.

As shown in Figure 18 management proxies usually provide different
interfaces for reporting and control.

3.5 Execution of a Management Process
(Operation Stage)

Once the management process has been defined and the managed domain
has been instrumented, the management process may be implemented and
executed. Remember, management processes are here understood in a
broader sense than computerized flows. The "executor" of a management
process may be a human being that follows a sequence of instructions
defined for a management process. The implementation of a computerized
management process means invariably implementing steps in terms of a
programming or a flow language.

When management processes are human-driven, meaning operated by
people, summarized/aggregated metrics describing expected behavior may
be informal (on paper).

When a management process is computerized, metrics must be provided
in formal, machine interpretable formats. An example of a formalized
description of expected behavior observed by management processes is a
service-level agreement or SLA [Halstone 2002].

In order to answer the questions when, how often, and'how frequently the
management process is performed, the following choices exist:

- It may be performed only once,

- It may be performed multiple times initiated by certain conditions,
or

- It may be performed continuously in specified time intervals.

In order to determine that a deviation from expected behavior has
occurred, the management process compares the aggregated data obtained

56 Chapter 3

from observations with the desired values. When a deviation from expected
behavior has been determined, a decision about corrective actions or
notification to a higher-ordered management process has to be made. This
decision is guided by policy derived from management objectives.

Figure 19 shows the general flow for executing a management process.

^ > ?
initiate management

process

observe, collect data ^
from the managed

domain

y
aggreg

r
ate data

T
assess against

management metrics

deviation from expected
behavior detected

(decision about corrective
action or propagation to

higher-ordered
^ management process ^

issue control instruction
or notification

Figure 19: General flow for executing a management process.

3.6 Management Process Hierarchies

In practical systems, a large number of management processes may
coexist, each responsible for certain aspects in the managed domain.
Dependencies between management processes often exist. Management
processes are often structured hierarchically (refer to Figure 19 where a

Application Management and Web Services 57

decision about corrective action or propagation to a higher-ordered
management process is depicted). A management process can issue
notification to another management process for external correction or further
propagation up in the management hierarchy. Complex hierarchies of nested
management processes appear. Management processes themselves need to
be managed coordinated, adapted to changing needs, etc. The combination
of all these issues makes management such a complex arena where well-
defined responsibilities and separation of concerns are essential.

3.7 Management of Management Processes

Management processes and supportive management systems must be
managed as well, a recursive relationship that needs to be grounded in
practice. Figure 20 shows the aspect that management processes themselves
are subject to management.

jmanaged domain: |

component

system

process, incl.

mgmt. process

person

organization...

I management
I process

ksk

reiK)rt

coriective

aetion

management
process

ask

report

action

Figure 20: Managing a management process.

ASPECTS IN APPLICATION MANAGEMENT

The variety of management tasks in management domains can be
classified in areas. One classification has widely been recognized.

58 Chapter 3

Based on initial letters, this classification is also referred to as FCAPS:

Fault

Configuration

Accounting

Performance

Security

Fault management deals with detecting, analyzing
and repairing what is broken.

Configuration management deals with issues
during application deployment (installation,
configuration) and operation (tuning).

Accounting management determines who is using
what and for what purpose.

Performance management deals with assuring the
specified performance for an application system.

Security management addresses the issue of who
can do what in a system. Authentication (proving
identity) and, based on authentication, access
control are main issues here.

Table 1: FCAPS management aspects.

Classification in Table 1 covers important aspects in management, but
there are more aspects to be considered. Another set of aspects are shown in
the following table:

System

Life cycle

Resource

Data

System management deals with the systems
including hardware and software that are involved
in performing an application.

Life cycle management focuses on component life
cycles of an application as discussed in section 2.

Resource management assures that quantity and
quality of resources for an application are available.

Data management addresses the need to manage
application data. Data about customers, processes,
and inventories are usually considered quite
valuable.

Data management prevents losses of data,
availability of data, and data representation in
formats that are not dependent on specific
applications.

Application Management and Web Services 59

Quality

User

License

Inventory

Quality management is important through all stages
of an application life cycle. Quality management
assures that an application is created, deployed,
operated, maintained and phased-out in a
predictable and controlled manner.

User management deals with representing
information about users in a system. User i
management is the basis for accounting and
security management.

License management is important in commercial
environments in order to meet the terms defined in
license agreements with application or system
vendors.

Inventory management tracks the information about
inventories and other valuable IT assts that exist in
an organization.

Table 2: Continued classification of management aspects.

Management aspects presented in the two tables can now be associated
with the stages of an application life cycle discussed in section 2. The result
is a taxonomy that is shown in Table 3.

Subsequently, a second taxonomy is shown in Table 4 which associates
stages of an application life cycle with steps of a management process as
discussed in section 3.3 where the definition of a management process has
been discussed.

4.1 Taxonomy 1: Management Aspects Versus
Application Life Cycle

Following table shows in its inner cells interpretations what a
management aspect (row) means when associated with a stage of an
application life cycle (column)\

application
life cycle -^
management

Creation Deployment Operation Maintenance Phase-out

^Double exclamation marks (!!) in cells indicate high importance of the management aspect
in combination with the associated life cycle stage. Double hyphen (-) indicate that the
management aspect is less relevant to the particular application life cycle stage

60 Chapter 3

1 aspect i
Fault
management

Configuration
management

Accounting
management

Performance
management

Security
management

System
management

Life cycle
management

Resource
management

Data
management

Quality
management

User
management

License
management

planning,
architecture
and design
failures

tools needed
for design,
development
and testing

The (people)
time spent in
various stage
of
development.

meet time
lines, budget,
performance of
contributors

secrecy of
designs and
code

development
and test
systems

processes for
analysis design
implementation
and test

people are
main resource
during creation

requirements,

designs, code,
documents

code quality,
quality
assurance,
testing

people
accessing
development
and test
systems

licenses needed
for
development
and test

unavailable
resources,
failures in
deployment

customization
in target
domain

resource
provisioning,
capacity
planning

avoid security
leaks when
deploying new
applications

adjust, tune
systems for
application

chose compute,
storage,
network
resources

bring in
application
data, transform
data when
needed

ensure the
deployed
application is
stable and
robust

manage access
to deployment
systems for
deployment
engineers

configure
license
managers,
ensures

detect, analyze,
repair run-time
failures I!

adjust
configuration
to improve
operation

accounting
during
operation I!

ensure run-time
performance
meets
expectations

prevent
security leaks
and break ins

manage
systems used
for operation

use of
resources,
flexing
resources based
on demands

prevent losses

availability,
reliability, QoS
assurance

who has access
to the
application
with which
privileges

ensure that
license
agreements are
met during

failures during
maintenance
cycles

adjust
configurations
during
maintenance

less relevant

duration of
maintenance
cycle

prevent
introducing
security leaks
during
maintenance

adjust systems
for requirements
of maintained
application

versioning,
prevent
components
dependencies

chose compute
resources that
meet new
requirements

maintain
application data,
prevent losses

ensure, improve
application
quality

users having
temporary access
to systems
during
maintenance

ensure that
maintenance stay
in line with
license

prevent
application
data lost

prevent
leaking or |
altering data

prepare
systems for
reuse or
replacement

release
resources for
reuse or
replacement

preserve,
migrate
application
data!!

Application Management and Web Services 61

Inventory
management

systems

development
and test
systems

identify
resources to
deploy an
application

operation

resources and
facilities where
an application
operates

agreements

replacement of
resources and
application parts

retire
resources or
applications

Table 3: Taxonomy associating management aspects with application life cycle.

Table 3 illustrates that management aspects in most cases are relevant
throughout all stages of an application life cycle.

4.2 Taxonomy 2: Application Life Cycle Versus
Management Process Steps

Another taxonomy can be discussed that associates application life cycle
stages with selected steps of management processes (refer to sections 3.3
through 3.5). The following steps of a management process (refer to section
3.3) are considered for the taxonomy shown in Table 4:

1) define expected behavior (functional and non-functional) of the
managed domain (step 1 .a in section 3.3),

derive management metrics (step 1 .b in section 3.3),

define measures and instrumentation in the managed domain
(step 1 .c in section 3.3) to provide input for assessment against
the management metrics defined in 2),

define assessment function that correlates measures against the
management metrics (step 1 .d in section 3.3) and alert or initiate
correction in the managed domain when deviations from
expected behavior occur.

The combinations of application life cycle stages with the selected steps
of management processes are shown in the following table:

2)

3)

4)

management
steps ^
application
life cycle i

Creation

Deployment

Define
expected
behavior

requirement
analysis,
development
process

define roadmaps,
deliverables and
milestones

Derive
management

metrics

architectural and
design specifications,
processes and
roadmaps, budget

describe platform
and environment
requirements and
dependencies

Define measures
and

instrumentations

milestones, budgets,
deliverables, tests,

use cases

observe processes for
resource
provisioning,
installation,
configuration

Define
assessment

does the system meet
requirements?

verily steps for
resource
provisioning,
installation, and
configuration

62 Chapter 3

Operation

Maintenance

Phase-out

availability,
reliability,
performance

improve functional
and non-functional
behavior, remedy
failures

data preservation

from simple
parameter thresholds
to complex SLA

typically not
explicitly defined

timelines

instrument the
application and
associated resources,
plan management
system

maintenance is
observed and
verified as stages
progress

typically not
explicitly defined

alert or notify when
thresholds are passed
or SLA are violated

does the evolved
system meet the
expected behavior?

obey timelines

Table 4: Taxonomy associating application life cycle with management process steps.

The following sections discuss examples of management processes that
are relevant to selected stages of the application life cycle:

- application creation (section 5),

- application deployment (section 6), and
- application operation (section 7).

Discussion will illustrate what management processes need to be defined
for each stage and will give examples how management metrics and
assessment functions can be provided and which instrumentation is needed
in the managed domain. It will also discuss who is carrying out management
processes.

MANAGEMENT IN APPLICATION CREATION

Application creation encompasses processes of defining applications
based on requirements, including architecture and designs of application
components, implementation, verification and test. The result is a working
version of an application that is released for deployment.

A variety of management processes is involved in application creation.
Two examples will be elaborated in order to provide some coverage of the
problem space.

Application Management and Web Services 63

5.1 Definition of Management Processes for Application
Creation

5.1.1 Example 1: Implementation

Implementation must be performed as a controlled process. Detailed
design specifications are prerequisites for implementation. Design
specifications are result of precursory design stages.

For Implementation, a plan must be developed how the implementation
process can achieve the desired result in a controlled manner.

Following aspects need to be considered:

Resources (budget determining headcount, equipment, utilities).

Timelines (roadmap, milestones, deliverables),

- Structure (organization, division of work, component break up,
definition of pieces for individual developers, team structure), and

- Dependencies (among pieces and among developers and teams).

The assessment function for managing implementation processes usually
is defined in terms of time-line charts where deliverables or milestones are
informally described with dates assigned. Time-line charts provide also the
basis for measuring and assessing progress during implementation.

5.1.2 Example 2: Assurance, Testing

After implementation, the quality of an implemented version of an
application must be assured and verified. This is usually achieved by testing.
Testing is another stage in application creation following implementation.
Testing has the purpose of assuring the quality of the implemented
application by assessing behavior of the implemented code base against
requirements. Testing can be complex and need to be organized in form of
test plans. Test plans are derived from application requirements and
encompass aspects of:

Functional verification (does the implemented application provide
the functions defined in requirements),

- Usability verification (is functionality provided in a usable and
expected manner).

Performance verification (are quantitative requirements met).

Robustness verification (is the application robust against failures).

64 Chapters

Similarly as in implementation, the assessment function for managing
assurance processes usually is defined in terms of time-line charts where
deliverables or milestones are informally described and assigned to dates and
teams. Time-line charts provide also the basis for measuring and assessing
progress during the assurance.

Since quality assurance has become more important over time, the
International Organization for Standardization (ISO) has introduced a
certified standard ISO 9000 [ISO9000] for quality assurance. Application
vendors certified ŵ ith ISO 9000 assure that they use the set of measures and
processes defined in ISO 9000 for assuring quality of their software
products.

5.2 Instrumentation in the Managed Domain

The managed domain for both examples, application creation and
assurance, is primarily people, developers and teams that need to be
organized. Instrumentation in the managed domain thus focuses on how
individual people (the "managed domain") are informed about expectations,
how they are directed, and how progress is reported to (human) managers.
Weekly reports have turned out as a reasonable measure for management
measuring and assessing progress against the time-lines defined as
assessment functions when management processes have been defined.

5.3 Execution of Management Processes

Management processes are performed by (human) managers that perform
the roles of defining and refining management processes for their domains of
responsibility, structuring work and organizing teams, communicating
management processes to team members and assessing progress based on
reports from team members.

Tools are used for reporting and creating time-line charts partially
automating routine tasks and assisting managers. Management in application
creation stage, however, is primarily executed and bound to humans.

6. MANAGEMENT IN APPLICATION
DEPLOYMENT

Application deployment follows after application release. Deployment is
the process of making an application operational in the context of a

Application Management and Web Services 65

customer's environment. Various tasks, associated with deployment, need to
be managed. Examples are:

- Allocating resources for the application,

Installing and configuring the application on those resources,

- Customizing the application to meet specific customer needs, and

- Migrating customer data into the application.

Management processes are again needed to achieve and assure controlled
behavior in these domains. Two examples are elaborated for illustration.

6-1 Definition of Management Processes for Application
Deployment

6.1.1 Example 1: Installation and Configuration

Installation and configuration of applications can be a complex task.
Management processes involve sequences of steps that need to be carried out
for installing and configuring an application. Management must encompass
domain knowledge by specialists that have critical understanding of complex
applications. Specialists primarily carry out deployment tasks and, as human
beings, need to be managed themselves with time-lines, deliverables and
milestones that define assessment functions for managing installation and
configuration processes.

6.1.2 Example 2: Customizing an Application

Applications usually need to be customized for customer environments.
Customization, again, is primarily performed by specialists with domain
knowledge of the customer's environment and the application.

Again, specialists primarily carry out deployment tasks and, as human
beings, need to be managed similarly as in application creation stage with
time-lines, deliverables and milestones that define assessment functions for
customizing applications.

6.2 Instrumentation in the Managed Domain

As mentioned, application deployment is hardly automated for complex
applications and is thus undertaken by humans. Instrumentation for
management processes in the domain of application deployment thus is also
closely related to managing people and their progress towards achieving a

66 Chapters

task. Time-line charts are used to assess progress. Instrumentation in the
managed domain basically shows as reporting of achievements or problems
by individuals to responsible (human) managers who assess progress and
make decisions about corrective actions if needed.

6.3 Execution of Management Processes

Human managers mostly execute management processes in application
deployment. Some tool assistance is provided for establishing and verifying
time-line charts and partial automation of processing and archiving reports
obtained from individuals. Centralization und unification of reporting has
turned out helpful for executing management processes.

7. MANAGEMENT DURING APPLICATION
OPERATION

Application operation is the main domain where automation is achieved
and management systems are applied. In contrast to application creation and
deployment, application operation is not largely dominated by human
involvement.

Three examples have been selected and will be discussed further
elaborating management in application operation space:

- Fault Management (section 7.1.1),

- Performance Management (section 7.1.2), and
SLA Assurance (section 7.1.3).

A section about management systems will provide an overview of how
management systems work today and how operators interact with
management systems.

7.1 Definition of Management Processes for Application
Operation

Management systems for supporting and automating management tasks
during operation require definition of management processes that can be
formalized and implemented in a management system. Special attention
must be paid when human involvement is required for operation and
interfaces between management system and human operators are used.
Those interfaces often provide critical points for operation and are also

Application Management and Web Services 61

critical points of failure. Interfaces are provided in form of management
consoles where information from the management system is reported to the
operator. This information is used by human operators for making decisions
and for actuating corrective actions through control provided as part of the
management console.

7.1.1 Example 1: Fault Management

Fault management is probably the most important task in operation
management. Fault management deals with the problem of "what to do when
some thing is broken". These are circumstances when an application does
not meet expectations in quantitative (functional) terms.

Management processes in fault management are usually defined as effect
-reaction chains like "when this happens" then "do this". First, fault
conditions must be detected. Next, the condition must be classified for
proper reaction. And third, the reaction must be executed.

Detection is usually automated by management systems based on probes
in the managed domain (in this case the application).

Fault conditions are usually identified when one or more components of
an application system are not responding or are not responding in the
expected manner. Definition of management processes includes defining
what expected behavior of components is and how this behavior can be
observed in the managed domain by proper instrumentation and reporting.
Faults can be detected in a variety of ways. Components themselves can
detect and report abnormal conditions or behavior. Probes external to
components can also observe component behavior and detect and report
faults. Rules for abnormal conditions or behavior must be defined as part of
the management definition process and established in the management
systems during instrumentation.

Sometimes, effects of failures in components are not detected as part of
component observation directly. This may be the case when components
cannot be instrumented. Effects of failures then will appear as unexpected
behavior in other components in the system.

Root cause analysis is the process for correlating failure observations in
the system with components that actually caused the failure or are the root
cause of the failure. Root cause analysis identifies cause-effect chains
tracing observed behavior to the component(s), which are the root cause of
that effect. Root cause analysis requires complex understanding of the
managed domain, the application and the management systems. Root cause
analysis is hardly automated today.

68 Chapter 3

Management processes for failure management must address:

Identification of components, define expected or normal behavior
for components in terms of measurable data.

Define instrumentation inside or in the environment of components
for observing and assessing that component behavior is in the
bounds of expected behavior that has been defined for a
component.

Define responsibilities and reporting paths when abnormal
behavior is detected.

Implementation of management processes is typically realized by
customizing components of management systems.

7.1.2 Example 2: Performance Management

Performance management is another important area for ensuring that an
application meets expectations. Performance management processes usually
are concentrated on the performance critical components. Identifying which
components are in the performance critical paths is a first important step for
defining management processes for performance management. Defining
performance management processes includes as a second important step the
definition of metrics in quantitative terms such as measures for component.

Measures of performance critical components can include:

Throughput- how many requests can be processed per time unit,

- Latency - what delay occurs between receiving a request and
processing it,

- Response time - what delay is experienced by the issuer of a
request between issue of the request and the receipt of the result.

Utilization ~ what percentage of capacity is used in a request
processing component.

Simultaneous requests (concurrency) - numbers of current or
maximum number of requestors (clients, customers) that can
interact with an application simultaneously.

Measures defined for performance critical components are then observed
in the system by proper instrumentations. Degradation of parameters will
cause notification to a responsive control system, which automatically can
decide about and initiate corrective actions in the managed domain, or
observed conditions will be reported to an operator console, and thus to the
operator (using the console).

Application Management and Web Services 69

Performance management also requires processes for collecting statistical
data, workloads, and usage patterns and for associating them with individual
application systems or sub-components.

7.1.3 Example 3: SLA Assurance

A Service-Level Agreement (SLA) is a more recent form of formally
describing expected behavior of application systems or components. SLA
definitions include bounds for measurable data that define expected behavior
in Boolean or statistical terms. Boolean terms/metrics refers to situations
where it can be clearly decided whether a parameter is in bound or out of
bound. Simple conditions are used in SLA such as:

response-time < 10 msec.

Any request with a response time larger (or equal) 10 msec is a violation
of this condition and subject to reporting.

Since Boolean conditions are very strict and may cause failure reports to
be generated even when the system is in normal condition, but may just be
facing a sudden hot spot causing a slight delay. Relatively complex
formulations are thus often desired for description and observation.

Statistical conditions usually refer to average or mean measures over
time intervals eliminating transitional changes being reported. Descriptions
are of the form:

average(response-time < 10, 5*60*1000).

This expression means that the average response time over an interval of
5 min (5*60*1000 msec) must be less than 0.01 sec.

Depending on capabilities of SLA, any statistical function can be used
for expressing statistical SLA terms.

A typical SLA has the following components:

- Purpose - describing the reasons behind the creation of the SLA.

- Parties - describes the parties involved in the SLA and their
respective roles. Examples are issuers and receivers of requests.

- Validity Period - defines the period of time that the SLA will
cover. This is delimited by start time and end time of the term.

- Scope - defines the components covered in the agreement.

- Restrictions - defines the necessary steps to be taken in order for
the requested service levels to be provided.

- Service-level Objectives (SLO) - are the levels of service that both
the users and the service providers agree on, and usually include a
set of service level indicators, like availability, performance and

70 Chapters

reliability. Each aspect of the service level, such as availability,
will have a target level to achieve.

- Service-level Indicators (SLI) - the means by which these levels
can be measured.

- Penalties - spells out what happens in case the service provider
under-performs and is unable to meet the objectives in the SLA. If
the agreement is with an external service provider, the option of
terminating the contract in light of unacceptable service levels.

Optional services - provides for any services that are not normally
required by the user, but might be required as an exception.

- Exclusions - specifies what is not covered in the SLA.

- Administration - describes the processes created in the SLA to
meet and measure its objectives

An example of a SLA definition is shown in Figure 21 for the following
terms: Assuming that myUDC.com and ASP.com have a clause like: At
month-end, the availability of the farm allocated to the user myASP.com,
measured on the myUDC.com from Mon-Fri from 9AM-5 PM should be at
least 99.9%. This can be specified as shown in the SLA definition shown
below in Figure 21.

Instrumentation in the managed domain then uses SLA specifications for
validation and detecting deviations from expected behavior, expected
behavior as described in the SLA. SLA in this sense provides
parameterization for instrumentations in the managed domain. General
probes can be used instead of specific probes that have one observable
metric built in. General probes are tailored to specific measurement tasks by
loading an SLA agreement for observation them. SLA definitions can be
complex depending on the granularity of how expected behavior is defined.

SLA definitions appear as result of management definition processes.
Careful planning is required for establishing complex management systems.
Little tool support for creating and maintaining SLA is provided today due to
recent emergence of SLA.

SLA definitions and SLA-based management are seen as a key for
further automation in system management. Management of SLA is
becoming an own area in system management.

Application Management and Web Services 11

<sla>
<slald>00000159398583</slald>
<partnerName>ASP.com </partnerName>
<startDate>Fri Feb 15 00 :00:00 PST 2004</startDate>
<endDate>Mon Jul 15 00:00:00 PST 2004</endDate>
<slo>

<sloId>l</sloId>
<dayTimeConstraint>9:5:1:5</dayTimeConstraint>
<measuredltem>

<item>
<const rue tType>fml.hp.COm/farm</const rue tType>
<constructRef> My-2-Tier-Farm</eonstruetRef>
<measuredAt>myUDC.com </measuredAt>

</item>
</measuredItem>
<evalWhen>month-end</evalWhen>
<evalOn>all</evalOn>
<evalFune>Availability:99.9:percent </evalFune>

</slo>
</sla>

Figure 21: Example of a SLA definition in XML syntax.

7.2 Instrumentation in the Managed Domain

Various techniques exist for instrumentation in managed domains during
application operation. Just like the applications, the systems providing
infrastructure or necessary functions in the environment of an application
must be subject to observation since the functioning of the application
depends on those underlying systems as well. Examples are machines on
which applications are running, networks connecting applications to users or
application components to one another, or other applications or services
referred to by an application during processing.

Management systems today cover underlying hardware infrastructures to
a large extent for instrumentation and observation. Dependencies of
applications to other application are less covered. Recent emergence of SLA
also incorporates dependencies among application into observation.

Various standards have evolved over time for purposes of providing
common data models, common access protocols and common
communication protocols among management instrumentations.

72 Chapter 3

operator i {console I I console

I (Inter-) Application domain - dependencies q Q
to other applications or services © ^- ot̂X

I (Intra-) Application domain
^ ^

\ System software domain m
Machine and device domain

Q-^-%>

I Network domain D - -

Figure 22: Instrumentation in the managed domain of an application.

Standards that are most relevant are discussed in the following sections.
Some of these standards are discussed in deeper detail in subsequent
chapters in the context of web services.

7.3 General Interaction Pattern for Instrumentation
Protocols

The interaction between server and agent is a general. Basic operations
are sown in the following table:

get(named-data-
element) -> value

set(name-data-
element, value)

Initiated by the server, the agent will read the value of
the named data element (MIB variable in SNMP) and
send the value back to the server in the reply message
(also referred to as "pull model").

Initiated by the server, the agent will set the named
data element (MIB variable in SNMP) with the
specified value. No reply is returned.
Setting the value of a data element may initiate a
control operation in the element. For this reason, the
server uses the set method to actuate control operations
in a managed element.

Application Management and Web Services 73

set(name-event,
handler)

notify(event)

Initiated by the server, the agent will memorize a
handler address to be notified when the named event
occurs (this operation is not supported in SNMP, where
predefined trap addresses are used for notifications, but
available in other systems).

Initiated by the agent, the agent will send a notification
message (called trap in SNMP) informing the server
that has registered an event handler before in the agent,
about the occurrence of an event (''push model").

Table 5: Basic operations for instrumentation in a managed domain.

In order to receive an event notification, the management process usually
interrupts its current activity in order to react to the event without delay.

The pattern for instrumentation protocols in a managed domain is not
bound to SNMP or other management protocols used in management
systems. As a pattern, it also applies to "protocols" between acting people,
managers and employees as it has been discussed in sections 6.1 and 7.1 for
management processes in application creation and deployment.

7.3.1 CMIS and CMIP (OSI Management)

The Common Management Information Protocol (CMIP) is a network
management protocol built on the Open Systems Interconnection (OSI)
communication model. The related Common Management Information
Services (CMIS) defines services for accessing information about network
objects or devices, controlling them, and receiving status reports from them.

CMIS/CMIP is designed to run on the OSI protocol stack and has two
disciplines. The first is CMIS which defines all of the services available for
management. While the second, CMIP, the actual protocol which the
services use to gather information. This model allows for management at all
levels of the OSI model and is also not a protocol which has unintelligent
agents, but instead the agents on the managed nodes are more intelligent
than their SNMP counterparts. CMIS provides for one similar actor to
retrieve and modify data on the managed stations: CMISE (Common
Management Information Services Element) commands. These commands
are an extended part of the CMIS services which has three categories:

- Management Association Services

- Management Notification Services

74 Chapter 3

activity:

react

management
process

("sei

w or
current

•ver")

get(named-data-elei

reply(value)

^
"pull" data

set(named-data-eler

value)

actuate

set(name-event.

handler)

notify(event)

"*̂l
"push" event

' — • 1 resume

1

Previous

activity

r

managed element

("clienf'/'agent")

proc

lent)
W"

lent, ^
^

\ ^
W'

^

ess

MIB variables

tuples: inSNMP

[data element,value]

! tuples:

[data element,value]

event handler:

[event,handler]

r

Figure 23: General interaction pattern for instrumentation protocols in a managed domain.

Application Management and Web Services IS

- Management Operation services

Within the Management Association services there are three sub services:

- M-INITIALIZE-generates a connection to a peer CMISE-service-
user for network or systems management,

- M-TERMINATE-terminates the connection between peer service
users,

- M-ABORT-used when a connection between two peers stops
abnormally.

Management Notification Services, like SNMP traps, provides the
managed stations the capacity to send events to management stations. This
notification is handled via the M-EVENT-REPORT sub service.

Management Operation Services has six sub services that are similar to
the SNMP commands. They are:

- M-GET-used to retrieve or gather management information,

- M-CANCEL-GET-used to cancel an M-GET request,

- M-SET-used to change/modify existing management information,

- M-ACTION-invoked by a CMISE-service-user to instruct a peer to
perform some specified action (device dependant),

- M-CREATE-used to create a new instance of an object. An example
being if there is a new device added to the network. It is possible
with this service command to notify, other peers of the existence of
the new station via an M-CREATE,

- M-DELETE-this is simply the opposite of the M-CREATE function.

As can be seen from these services there is an inherent intelligence to
each of the managed elements or management processes. Drawbacks using
CMIS/CMIP are that there are not many implementations of the OSI
network protocol nor are there many CMIS/CMIP management systems
available. Another problem is that this management protocol needs more
resources to operate on network device than SNMP does.

7.3.2 OMG

The Object Management Group (OMG) is an international non-profit
organization supported by information systems vendors, software developers
and users which develops standards and specifications for object-oriented
management environments, originally closely related to the Common Object
Request Broker Architecture (CORBA).

76 Chapter 3

The OMG Object Management Architecture provided the overall
architecture for OMG standards. It is described in the OMG standard
reference architecture which consists of a categorization of basic objects
into:

- Object Services,

- Common Facilities,

- Domain Objects, and

- Application Objects.

An OMG object service defines the interfaces and sequencing semantics
to support building well-formed applications in a distributed object
environment. In non-object software systems, a system's Application
Program Interface (API) is defined by a monolithic interface. The OMG
Object Services API is modular; particular objects may use a few or many
Object Services. By being object-oriented, the OMG Object Services API is
extensible and customizable; applications only need to use services they
require.

The operations provided by Object Services are made available through
the IDL Interface Definition Language (as defined in the OMG CORBA
specification) or through proposed extensions to IDL compatible with the
OMG Object Model.

8. SUMMARY

Every change in the business environment impacts the IT infrastructure.
IT infrastructure and management systems must accommodate change in
business needs at lower cost. Management products that have traditionally
been focused on network and systems management have begun to transition
into higher management layers of application management. The chapter
discussed the application life-cycle management and the processes involved
in it. It also discussed some of the existing relevant management standards,
namely SNMP, CMIP, CORBA, which are discussed later in more detail.
Some of these are discussed more details in the following chapters.

Chapter 4

ENTERPRISE MANAGEMENT AND WEB
SERVICES

1. INTRODUCTION

The evolution of enterprise computing has had a strong impact on the
role of system management. In the mid 1970s, mainframes were the primary
source of computing power. With their ability to process large amounts of
data and centralize information, mainframes became the workhorse of
organizations that could afford them. As companies grew, mainframes
became overburdened, and enterprises turned to lower cost minicomputers.
By distributing the computing load, mainframe resources were freed for
critical jobs.

Over time, the distribution of work across mainframes and
minicomputers became common. However, technology continued to
advance, and the personal computer began moving into the industry. With
their low cost, personal computers could be found on most desktops, a trend
that continues to this day. While PCs addressed some of the personal
productivity needs of users, they failed to provide the compute power needed
by technical and commercial users. During this time, workstations, servers,
and client-server computing emerged and revolutionized how many tasks
were accomplished.

Client-server and the emerging Web services technologies enable
companies to easily distribute information throughout the organization and

77

78 Chapter 4

deliver higher performance and greater system flexibility than legacy
systems and PCs. With the ability to be reconfigured quickly, data and
applications can be moved to wherever they are needed most. Today, users
can tap into distant corporate databases from their desktops or access files
and applications on their own systems, even if they are far away.

Client-server and Web services technologies are not only connecting
computers, they enabled organizations to do business anytime and anywhere.
With the rise of distributed computing, organizations found that they needed
a way to tie all of their disparate computing resources together into a
coherent enterprise network.

Managing the enterprise involves managing the IT infrastructure
(networks, systems), and managing the services thus came to be a critically
important task for the enterprise administrators.

1.1 System Management in the Enterprise

System management and administration has long been a difficult issue
for organizations. Typically, individual users managed their own desktops,
departments managed minicomputers, and data centers managed
mainframes. Without corporate standards for resource configuration and
management, organizations found it difficult to determine where systems
were deployed, how they were employed, and when they needed
maintenance.

Over time, administrators assumed the responsibility for desktop
configuration and maintenance. System administration became typified by
the number of administrators supporting systems for small groups of users.
Each group utilized different computing resources, management tools and
techniques, and procedures. This diversity resulted in configuration
inconsistencies, a high cost of ownership, significant enterprise network
complexity, and the need for a large, highly skilled administrative staff.

In an effort to improve efficiency, administrators standardized corporate
procedures and began using cross-network tools supporting administrative
tasks. Although limited in functionality, these tools helped administrators
perform work remotely; they ensured network performance, and simplified
monitoring and maintenance of computing hardware. While hardware
components could be monitored, administrators still lacked the tools to
address software, application, service, and platform configuration and
availability to meet the increasing requirements placed on the IT
infrastructure.

Enterprise Management and web services 79

1.2 Changing Requirements in IT Infrastructure

IT organizations must provide more information faster and with greater
reliability and accuracy in order to remain competitive in an increasingly
efficient global marketplace. Increased competition and new market
opportunities are driving widespread changes in the way organizations use
information technology. Organizations are discovering they need new ways
to differentiate. Organizations have understood that technology, better data
distribution, integrated business processes, and networked communications
are essential to improve customer relationships, increase global corporate
collaboration, streamline overhead costs, and use information more
effectively in order to enhance the value of products and services to
customers.

In addition, the changing nature of computing paradigms and
technologies, combined with insufficient system management tools, has left
IT organizations with environments that are expensive to manage. This
struggle continues to worsen as the demand for mission-critical computing
grows.

Mission-critical environments and customer demand are raising
expectations of acceptable service levels. As a result, distributed computing
environments must be more reliable, available around the clock, and easier
to diagnose and service. Systems must run continuously for longer periods of
time without interruption. Problems must be isolated and repaired without
impact on business operation. Disruption of platform availability during
routine maintenance must be avoided and critical applications and services
must always be available upon demand.

1.3 Enterprise Management

While every organization aims to meet the needs for increasing levels of
service, it is necessary to keep associated support costs low. IT organizations
must manage the enterprise infrastructure, including desktop and server
systems, data storage systems, applications, and the networks that connect
them, and maintain high levels of services. To be effective, IT organizations
must also reduce complexity and cost. They must lower human costs, and
consequently minimize the number of people required to keep the enterprise
IT systems operating efficiently.

These demands have left IT organizations struggling with the complexity
of the enterprise and the networked systems they use. Rapidly changing
trends in IT technology require constant training and enhancements in
knowledge and skills, putting additional burden on system administrators to

80 Chapter 4

keep pace with technology advancements. While the number of trained
personnel is decreasing, the cost of maintaining them is rising. One
important way to reduce costs consequently is to simplify the job
administrators do most, system management, specifically low-level system
management tasks by automating those tasks.

1.4 Role of System Management in the Enterprise

Enterprise management is a complex aggregate of tasks that enables
organizations to manage systems, applications, and the networks that
connect them. Achieving the continuous operation of servers, desktops,
storage subsystems, relational databases, transaction monitors, and complex
applications like SAP is difficult and time consuming. While no single
application can provide an optimal enterprise management solution that
meets every requirement on every platform, organizations can employ
applications that are designed to solve common problems that can be
adapted and extended to meet the specific needs of a particular organization.
Those systems are called enterprise management systems. Prominent
examples of widely used products in that area are the Open View suite from
Hewlett-Packard, Tivoli from IBM, and the management products from
Computer Associates (CA).

One component of enterprise management, and perhaps the most
pressing problem organizations face, is systems management. Focusing on
the management of the hardware platform, operating system, and storage
components, systems management provides the monitoring, performance,
and resource management that is essential to ensure that systems remain
operational. Monitoring and adjusting resource utilization allows that
application response time and service level requirements can be met. In
addition, storing data for trend analysis enables capacity planning and
resource management. When systems operate efficiently, organizations are
better equipped to make better decisions faster, a factor that can make the
difference in an increasingly competitive marketplace.

2. ENTERPRISE MANAGEMENT SYSTEMS

Enterprise management systems refer to infrastructure, applications
deployed and operating in that infrastructure and to services comprised of
applications.

Enterprise management comprises three major areas:

Enterprise Management and web services 81

• Infrastructure Management:

o Network Management,

o System Management, and

o Storage Management.

• Application Management.

• Service Management.

Conventional tools for system management typically do not support the
migration from managing small domains of disparate systems, such as data
centers or services in those data centers, to managing the integrated
enterprise. IT organizations need an integrated set of systems management
tools or a platform that offers common services for all enterprise
management applications. Such solutions must have a consistent look-and-
feel, implement enterprise-wide security procedures, integrate with other
management tools, and enable new functionality. Chapter 9 addresses this
problem space in deeper detail.

Applications
and Services

Administrator

Enterprise
Management

Infrastructure

;?̂ !:t:;:;:||li|i:;||̂

Figure 24: Dimensions of enterprise management.

Key capabilities required by an enterprise management system are:

Common management platform, scalable from a single system to
thousands of server and desktop systems.

Single point of management, enabling effective use of
administrative resources.

Proactive and automated management of complex and common
administrative tasks, reducing the likelihood for errors and
helping to ensure availability.

- Configuration flexibility, enabling systems to be configured out
of the box to best fit the needs of the environment, as well as
providing easy customization for new rules, scripts, actions, etc.

82 Chapter 4

- Management agent architecture, enabling administrators to add
functionality and management features.

Dynamic management agents, enabling functionality to be
extended simultaneously at different agent locations in the
management system independently of one another on an as-
needed basis.

- Active configuration management controls, providing a secure
interface for remote dynamic reconfiguration.

Single event model, enabling information to be shared with
multiple consoles for multiple administrators working
simultaneously.

Multiple system support, enabling administrators to monitor and
manage systems remotely.

- Predictive failure analysis, enabling administrators to predict
potential memory and disk hardware failures on a statistical
basis, thereby enhancing decision making and increasing
availability.

- Heahh monitoring, based on a sophisticated set of heuristics that
incorporates administrative knowledge, including an intelligent
rules-based health monitor that correlates metrics and gives
suggested steps for problem resolution.

Log-file scanning, enabling administrators to search and parse
logs and registers for particular status information.

- Logical element grouping, enabling the grouping of systems by
geographic location, server role, administrative responsibility,
etc.

Hierarchy and topology viewer, a central management
application that displays the hierarchy and a topology map of all
the objects that are being managed.

- Automatic discovery of systems, including IP addresses, subnet
addresses, hostnames, and object IDs to identify specific types of
systems.

- Physical system views, displaying images of hardware
components and pointing to components associated events,
enabling administrators unfamiliar with a particular platform to
quickly determine which components need to be replaced in case
of failure.

Logical system views, presenting a tree hierarchy of managed
domains, including all hardware and operating system

Enterprise Management and web services 83

components. If an event is associated with a particular
component, the logical view will identify its exact location
within the logical hierarchy.

Event and alarm management, providing administrators with the
information they need in case of triggered events or alarms.

Enterprise-wide security measures, such as authentication, data
integrity, and access control lists for management of data and
active management functions.

- Real-time performance analysis, enabling administrators to
isolate potential and existing bottlenecks.

Standard interfaces and protocols enable integration with third-
party management tools providing a complete enterprise
management solution across domains that are managed by
individual management products and management solutions.

- A common graphical user interface look-and-feel and the ability
to manage enterprise IT systems from any console.

- Trend analysis and historical data storage, supporting system
performance analysis, configuration fault analysis, system sizing,
and long-term capacity planning and forecasting.

- Host application and database fault management, increasing data
and service availability through integration with third-party
products.

- Firmware and patch management, providing administrators with
the ability to upgrade systems when needed.

- On-line diagnostics, enabling hardware and software problems to
be predicted, detected, isolated, and resolved, ensuring system
and service availability.

2.1 Agent-based Management Infrastructure

Enterprise management technology based on a management agent
architecture allows management agents to act in management roles in their
respective domains and to execute management code that monitors and
controls managed systems by sending requests to them and receiving data.
Management agents also have access to critical management information
and respond to higher-ordered manager requests. The typical organization of
management agents is in form of a hierarchy with individual domains of
responsibility.

84 Chapter 4

Utilizing an agent-based approach, enterprise management systems
enable local processing, within the domain of responsibility where
associated managed objects are located, rather than at a centralized location,
as it has been traditionally the case in centralized management systems. By
distributing management functions, enterprise management systems provide
higher reliability, availability, and serviceability in the enterprise network.
Enterprise management systems today may also employ autonomous agents,
a technique in which agents are not dependent on other software components
and all data collection and processing is done locally by intelligent agents.

Typically based on SNMP, these agents collect and process data locally,
and can act on data in order to send SNMP traps, run processes, etc., even if
the connection to their next-level managers is lost. These intelligent agents
can also initiate alarms, notifications, or specific actions based on collected
data or messages through customizable rules and thresholds.

Since no product can meet every need of enterprise management,
extensible modules can dynamically be loaded into management agents
without disruption of the overall management system. This provides
administrators with a flexible and extensible management application
framework that can be tailored to a comprehensive enterprise management
solution that can be adapted to constantly changing needs.

2.2 Three-tiered Management Architecture

An enterprise management system typically forms a three-tier
architecture that provides a high level of scalability and distribution.

• Console Layer - the console layer constitutes the user interface of the
enterprise management system. The console provides administrators
with visual representations of managed objects, as well as the ability to
manipulate attributes and properties associated with them. The console
should be platform-independent, portable and easily customizable in
order to be useful for a variety of computing environments and be
adaptable to changing requirements.

• Management Server Layer - the management server layer provides
typical management services. The management server layer can support
multiple consoles, enabling several administrators to view the enterprise
network simultaneously. The management server layer consolidates and
optimizes multiple console requests minimizing network traffic.
Communication with the console layer is routed through a well-defined
client application programming interface. This interface can also be used
by third-party tools to gain access to data collected by management

Enterprise Management and web services 85

agents. All users are authenticated ensuring that only users with
administrator roles have access and manage only the systems within
their control. Additional server agents provide management services,
including topology, event, and data management services.

• Management Agent Layer - the management agent layer consists of
agents and probes that manage objects such as desktops, servers, storage
subsystems, and network hardware and software. The agents typically
utilize rules-based technology to determine the status of managed
objects. Agents can then generate alarms or perform actions based on
detected conditions. Agents can be sophisticated providing auto-
management capabilities including predictive failure analysis.

2.3 FCAPS Management in the Enterprise

Typical FCAPS management tasks apply in enterprise management.
FCAPS encompasses the domains of Fault, Configuration, Accounting,
Performance, and Security management (FCAPS) [Sloman 1996].

Fault Management in the Enterprise

The detection, isolation, and replacement of failed or failing components
is essential to ensure that systems, applications, and services remain
available. Without on-line diagnostics, administrators must wait until a
component fails. Predictive analysis is highly desired. In order to determine
the state of components, including the firmware revisions and operating
system patches installed, administrators need a comprehensive set of on-line
diagnostics that can test and validate hardware, software, and network
components.

Enterprise management systems provide administrators with on-line
diagnostic capabilities. With enterprise diagnostic systems, system
administrators and users can perform runtime diagnostics, isolate faults, and
obtain status information on all devices, enabling the resolution of failures.

The on-line diagnostics tools enable administrators to test and validate
the configuration and function of server hardware and network devices.
Troubleshooting of hardware components must be supported. In addition,
administrators can construct a set of actions to be executed automatically by
the enterprise management system when diagnostic errors occur reducing the
time required to fix problems and increasing system, application, and service
availability.

86 Chapter 4

Configuration Management in the Enterprise

Greater use of flexible system architectures and constant changes in
products are just two reasons that lead to significant increase in systems
integration, scale and complexity. This has produced the need for a
configuration management environment capable of supporting many
different viewpoints, from strategic planning through to operational
deployment and eventual system withdrawal.

Configuration Management Systems include:

- Organizational Components. Identify the organizational units or
teams responsible for configuration management activities.

- Development Platform Engineering Team. Identify and describe
the integration of release management procedures with
informational and technical requirements necessary for release of
software for test and production.

- Configuration Management Responsibilities. Describe the
responsibilities of the organizational components performing
configuration management activities.

- Configuration Item Identification. Identify who is responsible for
configuration item identification and describe what will be
accomplished.

- Configuration Control. Identify who is responsible for
configuration control and describe the procedures for meeting the
configuration control.

- Configuration Status Accounting. Identify who is responsible for
configuration status accounting and describe the procedures for
meeting the configuration status accounting (baselines, records,
databases, etc.) requirements.

- Audits and Reviews. Identify the responsibilities involved in audits
and reviews and define what will be accomplished during each
review.

Scheduling and Tracking of Activities. Describe the scheduling and
tracking of configuration management activities.

- Library Management. Describe the procedures to be used for
development library environment management, validation, testing,
and release certification.

- Tools, Techniques, and Methodologies. Identify tools and
techniques and describe any unique methodologies used to
accomplish effective configuration management.

Enterprise Management and web services 87

Patch Management can be categorized into four phases: Assessment,
Testing, Deployment and Audit.

Security Configuration Management is another important aspect of
configuration management in the enterprise. It is discussed under the
security topic of FCAPS management below.

Accounting Management in the Enterprise

Accounting management in general determines who is using what, to
what extent and for what purpose. Accounting systems in the enterprise are
of complex nature.

Accounting consists of a meta-cycle of:

- Defining an accounting model (data and events).

- Defining update cycles for that meta cycle.

The accounting cycle then is driven by the meta model:

- Collect accounting events.

- Aggregate and process them.

- Assign accounting events to accounts.

Store accounting events in accounts for later inquiry.

Based on these cycles, accounting information is used for a multitude of
inquires in order to derive financial statements, general ledger and sub-
ledger information providing valuation and recording of financial data as the
basis for financial statement reporting, revenue and cost accounting, order
and project accounting, and product and service cost calculation determining
unit costs for all products and services. Accounting tools are closely tied
with Customer Relationship Management (CRM) systems [Dyche 2001].

Typical accounting systems also include a variety of reporting tools.
Inventory tools give businesses the ability to categorize entities, items and
transactions by location for easier management, tracking and reporting of
inventories across multiple locations.

Performance Management in the Enterprise

Keeping the network up and running is a critical and time-consuming
task. Administrators need systems that help them to understand network
performance. Real-time performance analysis capabilities of enterprise
management systems enable administrators to determine system workloads.
When system and network reconfigurations are performed or new equipment
is added, the immediate impact of those actions can be analyzed and used to
guide performance tuning efforts.

88 Chapter 4

To ensure resources are being used to their full potential, IT
organizations perform a variety of analysis and planning tasks. With
enterprise management systems, administrators can collect and centrally
store critical system performance and configuration data for fault analysis,
system sizing, and long term capacity planning. An interface to that data,
typically maintained in relational databases, enables to use analysis tools and
automate and customize data analyses tasks.

Security Management in the Enterprise
Large and small organizations alike rely on trusted security mechanisms

to protect their networks and consequently their business functions. Many
industries such as engineering, finance, health care, and government, need
the highest levels of security and guaranteed privacy for their systems and
networks.

Enterprise management systems include a variety of security mechanisms
to ensure users are authenticated and granted access only to the areas of the
system to which they are permitted. A multitude of security models exists.

Security features of typical enterprise management systems include:
- user or administrator identification and authentication,
- administrative roles and domains,

- access rights of roles in domains,
- encryption as basis of security.

Security configuration management is the ongoing configuration
maintenance cycle that is associated with security. Security configuration
management tools can fix vulnerabilities before problems occur. Security
configuration management is comprised of patch management, system
hardening, security operations, and security auditing.

System hardening is the constant evaluation of a company's security
architecture and audition of system configurations according to
recommendations such as issued by the Network, Security (SANS) Institute
or The Center for Internet Security (CIS). Vendors such as Microsoft also
provide guidelines such as the Microsoft Security Operations Guides.

Security operations are tasks such as changing passwords for accounts
with high authority, periodically alerting certain accounts to change
passwords, etc. Without automation, these important tasks will remain
undone in most IT organizations.

Lack of security auditing in large organizations will inevitably cause
security configurations to "drift" over time. To ensure that security policies
are enforced, systems must be audited periodically.

Enterprise Management and web services 89

3. INTEGRATED IT SERVICE MANAGEMENT
(ITSM)

One origin of Integrated IT Services Management (ITSM) can be found
in systems management historically done in large-scale mainframe
environments. Through constant refinement over the years these services and
functions attained a high level of maturity. ITSM is a methodology, which is
comprised of a set of best-practices documents and guidelines, which have
been described in the IT Infrastructure Library (ITIL).

Although the UK Government created the ITIL, it is has been rapidly
adopted across the world as the standard for best practice in the provision of
IT Services. Although the ITIL covers a number of areas, its main focus is
on IT Service Management. ITSM provides process-based, integrated
services with a focus on business requirements.

The ITIL covers six areas:

• Service Support,

• Service Delivery,

• Planning to Implement Service Management,

• Infrastructure Management,

• Applications Management, and

• The Business Perspective.

ITSM is generally divided into two main areas:

• Service Support and

• Service Delivery.

Together, these two areas consist of various disciplines that are
responsible for the provision and management of effective IT services.
Those disciplines are discussed in the forthcoming sections.

In today's web-services world, IT organizations need to be increasingly
flexible, agile, and cost efficient to be aligned with ever evolving business
requirements, for which IT service management is crucial.

ITSM is a business-driven approach to IT management that specifically
addresses the strategic business value generated by IT organizations and the
need to deliver superior IT service. It is designed to address people,
processes and technology issues that all IT organizations face.

90 Chapter 4

3.1 The IT Infrastructure Library (ITIL)

Today, many IT or service provider organizations face the challenge of
shifting paradigms from infrastructure management toward service
management. The IT Infrastructure Library (ITIL) has become the most
widely accepted approach to IT service management in the industry.

ITIL is the basis for ITSM. ITIL provides a comprehensive and
consistent set of best practices for IT service management, promoting a
quality approach to achieving business effectiveness and efficiency in the
use of information systems.

ITIL is based on the collective experience of commercial and
government practitioners worldwide. This has been combined into one
reliable, coherent approach, which is fast becoming the de facto standard
used by many of the world's leading businesses. A wide range of products
and services are available to support these initiatives. ITIL products include
ITIL books, ITIL Qualifications and Certification, and the IT Service
Management Forum (itSMF). Commercial elements provided by companies
include consulting, solutions and training.

The itSMF is a non-profit organization, wholly owned and operated by
its members. As the official ITIL user organization, it is dedicated to set
standards for best practices in IT Service Management.

3.L1 The ITIL Toolkit

The ITIL Toolkit represents the implementation of the ITIL. It is
designed to help guide through ITIL/ITSM. It contains a series of
components and resources to simplify, explain and manage ITIL processes.

It comprises a series of resources:

• An ITIL Guide - a detailed and comprehensive introduction to ITIL,
targeted at both beginners and experienced practitioners.

• An ITIL Management Presentation - a full presentation on ITIL and
service management. It explains ITIL with detailed notes.

• The ITIL Fact Sheets - a reference kit comprising a series of ITIL fact
sheets. These cover each of the main ITIL disciplines.

• An ITIL Compliance Assessment Kit - a comprehensive questionnaire
set designed to help assess the compliance position with ITIL and
identify which areas need attention.

• ITIL Presentation Template - to help to interpret compliance
assessments.

Enterprise Management and web services 91

3.2 ITSM General Methodology

ITSM and ITIL, upon which it is based, provide an integrated, process
based set of best practices to manage IT services, including centralized
services and decentralized services. Whereas ITIL defines and documents
the best practices, ITSM employs them to meet unique customer
requirements and priorities.

A roadmap to IT Service Management starts with an organization
strategy and requirements assessment, which determines the organization's
requirements both now and in the future. This initial assessment determines
the current, existing IT infrastructure, processes, and services. It also
provides an understanding of a customer's desired future state of IT and the
services that it needs to achieve the goal across the enterprise. The details of
this approach are shown in the following diagram.

Business End-Users (Customers)

Requirdments (needs)

^ \ ^ IT Service Delivery Process

Services ̂ provided)

Business
Strategy

Service
Planning

Organization
Planning

Technology
Planning

Service Level
Management

Availability
Management

IT Service Support Process

Incident
Management

Problem
Management

Change
Management

Release
Management

Capacity
Management

[Configuration|
Management

Continuity
Management

Requiremants (defined) Technology and Services (proposed)

Support Services

Figure 25: ITSM Methodology.

Requirements Definition Process
The requirements definition process focuses on areas within the

organization and IT infrastructure to determine requirements and metrics in a
top-down approach starting from business strategy down to technology:

92 Chapter 4

• Business - determines what are the requirements driven by the
organization business needs.

• Service - determines what services need to be provided to satisfy those
requirements.

• Operational - determines what IT infrastructure is needed to support the
services.

• Technology - determines what technology is needed for that IT
infrastructure.

The following strategy and planning processes take place within the
definition stage of the requirements definition process:

• Business Strategy - how are current business requirements linked to
technology infrastructure, what are the processes that provide that
linkage.

• Service Planning - how does IT provide services internally and
externally for the organization, what are the processes for providing
those services.

• Organizational Planning - how does the organization adapt to internal
and external business factors that impact the IT infrastructure, what is
the impact of how IT is integrated within the organization.

• Technology Planning - how does IT plan its technology infrastructure
internally and externally around the organizations business requirements
and what models define relationships?

Once the definition of requirements is accomplished, ITIL best practices
are employed to develop the necessary IT Services Support and Service
Delivery processes. Together this provides an enterprise wide ITSM solution
based on ITIL best practices that are tailored to the organization's specific
business and IT infrastructure requirements.

3.3 IT Service Management Processes

ITSM encompasses the following areas as basic areas of ITIL: Service
Delivery Processes and Service Support Processes.

Service Delivery Processes:

The Service Delivery Process comprises:

• Service Level Management based on Service Level Agreements -
maintain and improve the level of service to the organization.

Enterprise Management and web services 93

• Availability Management - optimize IT infrastructure capabilities,
services, and support to minimize service outages and provide sustained
levels of service to meet business requirements.

• Capacity Management - enables an organization to manage resources
and strategically plan for future resource requirements.

Service Support Processes:

• Incident Management - the day-to-day process that restores normal
acceptable service with a minimal impact on business.

• Change Management - standard methods and procedures for effective
managing of all changes.

• Problem Management - the diagnosis of the root causes of incidents
in an effort to proactively eliminate and manage them.

• Release Management - testing, verification, and release of changes to
the IT environment.

• Configuration Management - physical and logical perspective of the
IT infrastructure and the provided IT services.

• Continuity management - the process by which can be ensured that
IT Services can recover and continue should a serious incident occur.

Depending on the ITSM consulting methodology that is employed,
additional value-added areas can be included. These areas could be separate,
but also dependent on those listed above, such as print management, or they
could be sub-processes, such as IT strategy development.

3.4 ITSM General Implementation

A typical ITSM implementation encompasses the following stages:

• Determine the current, existing IT infrastructure, processes, and
services.

• Develop the desired future state of IT and the services that it
needs to provide.

• Architect a roadmap that shows how to get to the desired state
from the current state.

• Determine the steps needed to execute the roadmap.

94 Chapter 4

Following those stages, an ITSM implementation can be modeled as a
framework with five phases:

• Assessment - determine the current state and begin to collect and
understand the metrics for the future desired state.

• Architect and Design - develop a mature design for the future
desired state.

• Planning - develop the plans necessary to achieve the future
desired state in form of a phased roadmap.

• Implementation - implement and deploy the plans within IT and
across the enterprise to approach the future desired state.

• Support - manage, maintain, and improve the future desired state
by being able to adaptively integrate enhancements as needed or
required.

Within this framework, managing IT as an enterprise wide, service
oriented entity typically comprises one or more of the following
perspectives:

• People - quantity and quality of expertise and knowledge.

• Processes - IT and organization specific practices, procedures,
guidelines, etc.

• Technology - the total logical and physical technology
infrastructure consisting of hardware, software, communication
networks, applications, data models, etc.

• Organization - internal and external business factors that affect
IT and how IT interfaces with an organization.

• Integration - how is IT integrated within the business model,
what services does IT provide, how are the services provided,
and how are best practices employed within IT.

3.4.1 Service Delivery Processes

Service Delivery is the management of the IT services themselves, and
involves a number of management practices to ensure that IT services are
provided as agreed between the Service Provider and the Customer.

Service Delivery has been introduced as following disciplines:

Service Level Management based on Service Level Agreements,

- Availability Management, and

- Capacity Management.

Enterprise Management and web services 95

3.4.1.1 Service Level Management based on Service Level Agreements
Service Level Agreements (SLA) are fundamental to business continuity.

They define minimum levels of availability from key suppliers, and often
determine what consequences will be taken in the event of disruption.

In order to define SLA, the following areas are usually considered:
- Agreement statistics - such as what is included within the

agreed service.
Availability - agreed service times, response times, etc.
Help Desk Calls - number of problems reported, response times,
resolution times.

- Contingency - agreed contingency details, location of
documentation, contingency site, third party involvement, etc.
Capacity - performance timings for online transactions, report
production, numbers of users, etc.

- Costing Details - charges for the service, and penalties in cases
that SLA have not been met.

3.4.1.2 Availability Management
Availability Management is the practice of identifying levels of IT

Service availability. All areas of a service must be measurable and defined
within the Service Level Agreement in order to measure and validate
availability of a service.

Availability is usually calculated based on a model involving the
availability ratio and techniques such as Fault Tree Analysis. These
techniques include the following elements:

Reliability - the time for which a component can be expected to
perform under specific conditions without failure.

- Recoverability - the time it should take to restore a component
back to its operational state after a failure.

- Maintainability - the ease with which a component can be
maintained, which can be either remedial or preventative.
Resilience - the ability to withstand failure.

- Security - the ability of components to withstand breaches of
security.

IT Security is an integral part of Availability Management. Some of the
above elements are the outcome of performing a risk analysis to identify any
resilience measures, identifying how reliable elements are and how many
problems have been caused as a result of system failure.

96 Chapter 4

3.4.1.3 Capacity Management
Capacity Management is the discipline that ensures IT infrastructure is

provided at the right time in the right quantity at the right price, and ensuring
that IT is used in the most efficient manner.

This involves input from many areas of the business to identify what
services are (or will be) required, what IT infrastructure is required to
support these services, what level of contingency will be needed, and what
the cost of this infrastructure will be.

The following elements are inputs into Capacity Management processes:

Performance monitoring.
Workload monitoring,

- Application sizing,
- Resource forecasting,
- Demand forecasting, and
- Modeling.

Capacity management is driven from these elements in combination with
the capacity plan itself, forecasts, tuning data and service level guidelines.

3.4.2 Service Support Processes
Service Support has been introduced as following disciplines.

- Incident Management,
- Change Management,
- Problem Management,
- Release Management,
- Configuration Management, and
- Continuity management.

3.4.2.1 Incident Management
Incident Management is the resolution and prevention of incidents that

affect the normal operation of IT services. This includes ensuring that fauhs
are corrected, preventing any recurrence of these faults, and preventative
maintenance to reduce the likelihood of these faults.

The effective practice of both Incident and Problem Management ensures
that the availability of IT services is maximized.

3.4.2.2 Change Management
Change Management is the practice of ensuring all changes to

configuration items are carried out in a planned and authorized manner. This

Enterprise Management and web services 97

includes ensuring that there is a business reason behind each change,
identifying the specific configuration items and IT services affected by the
change, planning the change, testing the change, and having a roll back plan
in case that the change results in an unexpected state of affected
configuration items.

IT Security must be embedded into the change management process to
ensure that all changes have been assessed for risks. This includes assessing
the potential business impacts of changes.

3.4.2.3 Problem Management

Problem Management is the resolution and prevention of incidents that
affect the normal operation of IT services. Problem management includes:

- Problem detection.

Problem reporting, and

Problem resolution.

The Service Help Desk plays an important part in problem management.
It is very often the first contact when problems are encountered. The Service
Help Desk is a single point of contact for end users who need help.

There are different types of Help Desks, the selection of which is
dependent upon what the business requires. Some Help Desks provide a
simple call logging function, and escalate calls to more experienced and
trained staff. Others provide a high degree of business and technical
knowledge with the ability to solve most problems when they are reported.

Service Help Desks embrace the following functions:

- receive all calls and e-mails about problems;

- problem recording;

- problem prioritization, classification and escalation;

- problem solution;

- update the end user on progress;

- communication with other ITSM processes;

- report to management, process managers and customers,

3.4.2.4 Release Management

This discipline of IT Service Management deals with all software
configuration issues within the organization. It is responsible for the
management of software development, installation and support of an IT
organization's services.

Services are often not regarded as tangible assets, which results in
inefficient attention and control. Unauthorized software modifications can

98 Chapter 4

lead to fraud, viruses, and malicious damage to data files and other severe
consequences. It is important that release management procedures be
reviewed and impact on services be assessed. Back out plans are essential.

3.4.2.5 Configuration Management

Configuration Management is represented and documented in the
Configuration Management Database. This database contains details of the
organization's elements that are used in the provisioning and management of
its IT services. This database is more than an asset register, as it contains
information that is related to maintenance, migration, and experienced
problems with configuration items.

The Configuration Management Database holds a much wider range of
information about items including hardware, software, documentation, and
personnel.

Configuration Management essentially consists of four tasks:

- Identification - specification, identification of IT components.

- Control - management of each configuration item, also
specifying who is authorized to manage (and change) it.

Status recording - this task deals with the recording of the status
changes of all configuration items registered in the configuration
database, and the maintenance of this information.

- Verification - this task involves reviews and audits to ensure the
information contained in the configuration database is accurate.

Without the definition of all configuration items that are used to provide
IT services, it can be very difficult to identify which items are used for
which services. This could result in critical configuration items being lost,
moved or misplaced, affecting the availability of the services. It could also
result in unauthorized items being used in the provisioning of IT services.

3.4.2.6 Automated Discovery of Systems and Components

Large organizations often find it difficult to keep track of systems. To be
effective, IT organizations must find better ways to keep track of constantly
changing and growing configurations. By knowing which systems are
employed where, resources can be moved more efficiently as needs dictate.
Enterprise management software helps administrators obtain system
information through automatic discovery. For each system, IP address,
subnet address, and hostname information can be discovered and collected
automatically. In addition, object IDs can be used to identify specific types
of systems. As a resuh, operators can monitor how systems are deployed, as
well as how the networking infrastructure is employed.

Enterprise Management and web services 99

3.4.2.7 Continuity Management

Continuity management is the process by which plans are put in place
and managed to ensure that IT Services can recover and continue in case of a
serious incident. Continuity management is not only about reactive
measures, but also about proactive measures - reducing the risk of severe
business impact.

Continuity management is so important that many organizations will not
do business with IT service providers if contingency planning is not
practiced within the service provider's organization. It is also a fact that
many organizations that have been involved in a disaster where their
contingency plan failed lost business within 18 months after the incident.

Continuity management is regarded as the recovery of the IT
infrastructure used to deliver IT Services. Many IT organizations practice a
much far-reaching process of Business Continuity Planning, to ensure that
the entire end-to-end business process can continue in case of a serious
incident.

Continuity management involves the following steps:

- Prioritizing the businesses to be recovered by conducting a
Business Impact Analysis.

Performing a Risk Assessment (or Risk Analysis) for each of the
IT Services to identify the assets, threats, vulnerabilities and
countermeasures for each service.

- Evaluating the options for recovery.

- Deriving the Contingency Plan.

- Testing, reviewing, and revising the plan on a regular basis.

Business Continuity Planning and Disaster Recovery Planning.

Business continuity planning and disaster recovery planning are vital
activities. The creation and maintenance of a business continuity and disaster
recovery plan, is a complex undertaking, involving a series of steps.

Prior to creation of the plan itself, it is essential to consider the potential
impacts of disaster and to understand the underlying risks. Following these
activities, the plan must be created. The plan must then be maintained, tested
and audited to ensure that it remains appropriate to the needs of the
organization.

Business Impact Analysis is essential to the business continuity process.
This involves considering the potential impact of each type of disaster or
event. At a basic level, business impact analysis is a means of systematically
assessing the potential impacts resulting from various events or incidents.

100 Chapter 4

After having determined impacts, it is equally important to consider the
magnitude of the risks, which would be caused by these impacts. This
activity will determine which scenarios are most likely to occur and which
should attract most attention during the planning process.

Disaster recovery policies underpin an organization's approach to
contingency and disaster recovery. They are usually linked closely with
security policies, both addressing the basic requirements to ensure the
stability and continuity of the organization. It is essential therefore that they
are up to date and remain up to date, are comprehensive, and it is essential to
monitor contingency practices to ensure that they are met in practice.

4. MODEL-BASED MANAGEMENT

As systems become larger and more complex, one can expect increasing
reliance on automatic or semi-automatic management tools that adapt to
constant changes occurring in large and dynamic Enterprise IT
infrastructures. Adaptivity of management systems to changing conditions in
the existing system, to changing demands, and to changing business needs is
the major challenge for Enterprise IT management systems.

In order to allow Enterprise IT management systems to react and to
proactively prevent failure conditions, knowledge about the system which is
present in human operators must be transferred into machine-usable
representations, so-called models, which allow reasoning upon this
information, assessing and interpreting it, deriving conclusions and reacting
accordingly by issuing management and control instructions to systems in
the IT infrastructure in an automated manner.

Models are comprised of:

- Static aspects (data centers, inventories of hard- and software,
licenses, staff, etc.).

Dynamic aspects (current load and utilization conditions, error
conditions, etc.).

Several hard problems are inherent to model-based approaches:

- How to obtain models?

How to represent models?

How to keep models consistent with the reality they represent?

How to deal with change?

Enterprise Management and web services 101

How to provide models that not only reflect the current state, but
also capture future evolution, anticipation and expectations of
future trends, etc.?

In reality it is often hard to obtain an integrated management perspective
by model-based approaches. Models are often assembled bottom-up, and
presented in a technical form. They are manually maintained by a staff of
technical administrators and system architects.

Moreover, complex service hierarchies span many organizations crossing
multiple organizational, administrative and jurisdictional boundaries and
lead to inter- and intra- organizational dependencies. These dependencies
relate to the entirety of resources, systems, tools, applications, people,
workflows and processes that are necessary to operate, administer, manage
and provision services in heterogeneous environments and thus have a great
influence on the management processes of all involved organizations.

Despite the difficulty that is inherent to model-based approaches, there is
really no alternative. Today, large IT organizations rely on large troops of IT
staff troubleshooting and trying to keep systems operational and keep them
up. This approach does not scale. It is a good average in the industry that one
IT operator roughly manages 50 servers. With servers becoming cheaper,
smaller and denser, the number of servers per IT operator must increase; in
fact it must increase faster since there is cost pressure on the IT staff side as
well.

This calls for more automation, primarily in low-end system
management. Delegating those tasks to management systems requires
representation of knowledge inside management systems, which is the core
of the model-based management approach.

On the other side, the complexity, which is associated with models
coming into systems, must be overcompensated by automated model
generation, environment discovery and automated update cycles performed
in models.

One major task of service management is to identify and to model
dependencies between services, for example using roles, interactions and
communication relationships.

In order to address some of the problems associated with service
management, a generic service model can be introduced that defines
commonly needed service-related terms, concepts and structuring rules in a
general and unambiguous way [Hegering 1999]. This service model can be
applied to a variety of scenarios and helps to analyze, identify and structure
the necessary actors and the corresponding inter- and intra-organizational
associations between these actors. Since it also covers the service life cycle.

102 Chapter 4

it helps to establish, enforce and optimize information flows between
organizations or business units. Service models take a top down view and
systematically abstract service and organizational details. This methodology
ensures, that functional, organizational and life cycle aspects necessary for
service management are considered.

The generic service model addresses the following requirements:

• Generic and abstract service definition: The model gives an
abstract definition of a service and thus provides a common
understanding for describing services dependencies for a
particular scenario or environment.

• Integration of organizational aspects: The modeling approach
defines a service as the association between organizations that
provide and use services. It allows to model scenarios such as
supply-chain and provider hierarchies.

• Separation of service definition and service implementation: The
separation of the abstract service description from the
corresponding service implementation enables providers to
implement services according to their local environment without
imposing changes on client services (service virtualization).

• Management as an integral part of the service: the model
considers the management of services as an integral part of the
service itself.

4.1 Models in Systems Management

IT infrastructures are influenced by several unpredictable factors such as
the network performance, temporally varying workloads, and components of
services contending for resources. These interactions are difficult to
characterize because of their dynamic nature. These factors make it
impossible to anticipate all problems during services design, deployment and
test.

Model-based management [Pavlou 98] includes formulation and
formalization of expected and agreed-upon behavior. This is subject to
Service Level Agreements (SLA), with Quality of Service (QoS)
expectations such as availability or response times. Operational services
must be monitored for potential QoS violations and performance
bottlenecks, with effective actions being taken to prevent these problems.
Current management systems that monitor thresholds and trigger alarms rely
on correct interpretation by the operator to determine causal interactions.
This approach does not scale as the number of thresholds and alarms

Enterprise Management and web services 103

increase. For a scaleable solution, a management system must be able to
monitor, diagnose and reconfigure service components to ensure user-level
QoS goals. The management system must be proactive and coordinate with
existing network management systems.

Model-based reasoning provides a framework necessary for articulating a
management system with the above requirements. Model-based approaches
allow describing the expected modes of operation of each component in the
system. Furthermore, only the properties of interest are modeled. All other
details are abstracted away. For example, when managing performance, only
response time, visit count, utilization, and interaction characteristics of each
component are modeled. Anomalies are detected by comparing
measurements with baselines.

The industry is beginning to converge on standards such as DMTF's
Common Information Model (CIM) that provide ubiquitous management
information models, and on standards such as the Unified Modeling
Language (UML) [Booch 1998]. Software design tools and design languages
including UML encourage the design of systems as objects and resources,
and describing the relationships between them. The emergence of these
models and tools enable model-based management since significant parts of
the management model can automatically be populated.

Model QoS Goals

Agent
Topology

Monitoring

Model-Based Management!
Engine

Management
Information
Description

Control

Managed Web service

Figure 26: Model-based management system.

4.2 Models for Service Management

Several modeling approaches exist in different branches of the IT
industry. Some of them are discussed next.

104 Chapter 4

4.2.1 Common Information Model (CIM)

Distributed Management Task Force (DMTF) defines the Common
Information Model (CIM). CIM introduces a management information
model that allows integrating the information models of existing
management architectures. CIM acts as an umbrella that also allows
exchanging management information. The Common Information Model is a
conceptual information model for enabling end-to-end management. Until
now the focus has been on creating management information models for
networks, storage, applications separately and often at odds with each other.
Common Information Model has tried to establish an information model that
spans various domains. It provides consistent definition and structure to data.
The language that CIM uses for modeling is the Managed Object Format
(MOF). CIM is independent of any instrumentation and is not tied to any
particular information repository.

The CIM Core Model gives a formal definition of a service and allows
hierarchical and modular composition of services consisting of other
services. However, the focus in CIM is on rather technical details of
components than of service composition (pg. 212) and does not include a
notion of domains, such as customer and provider.

The Common Information Model (CIM) is a conceptual model for
describing a business computing and networking environments with all the
managed entities, their states, operations, composition, configuration, and
relationships. Model contents are not bound to a particular problem domain
or implementation, but address end-to-end management from clients, to
servers, and over the network.

CIM addresses FCAPS management (fault, configuration, accounting,
performance and security management) and supports the abstraction and
decomposition of services and functionality. The information model defines
and organizes common and consistent semantics for managed entities.

The organization of CIM is based on an object-oriented paradigm
promoting the use of inheritance, relationships, abstraction, and
encapsulation to improve the quality and consistency of management data.
Object-orientation in CIM is applied in the following dimensions:

- Abstraction and classification. To reduce the complexity, high level
and fundamental concepts (the objects of the management domain)
are defined. These objects are grouped into types of management data
(classes) by identifying their common characteristics and capabilities
(properties), relationships (associations) and behavior (methods).

Enterprise Management and web services 105

- Object inheritance. Additional detail can be provided by sub-classing.
A subclass inherits all the information (properties, methods and
associations) defined for its super class. Subclasses are created to
classify the levels of detail and complexity at the right level in the
model, and to deliver continuity of management information.

- Dependencies, component and connection associations. Being able to
express relationships between objects is an extremely powerful
concept. Before CIM, management standards captured relationships
in form of multi-dimensional arrays or cross-referenced data tables.
The object paradigm offers a richer and more expressive approach by
that relationships and associations are now directly modeled. In
addition, the way that these relationships are named and defined,
gives an indication about the semantics of object associations. Further
semantics and information can be provided in properties.

4.2.2 CIM Meta Model

The CIM Schema describes the core and common models. CIM is an
object oriented model and has capabilities to represent types, and instances
alike. CIM defines the notion of Classes and subclasses. Classes are types
while subclasses are subtypes. Instances are instantiation of the Classes and
subclasses and represent things. Properties are attributes and Relationship is
pairs of attributes.

Nimed il«i»»efvt

f . l *»« i !« f Jy c>t*Sfsa^

f̂ rofS^erty

CkuMfl^r

%

•-Eli^rnafit Sc^v îTO-

iM^hod

Ciatss

UL

Sdh&im

tf'im^

zjr~
Figure 27: CIM Meta model.

106 Chapter 4

A CIM Class is a blueprint that describes the properties and methods of a
particular type of an object. Classes have properties and methods. A Class
Name is unique in a particular schema. Properties are unique within a class.
A property has a name, a data type, a value and an optional default value.
The data types that CIM supports are uintS, sintS, uintl6, sintl6, uint32,
sint32, uint64, sint64, string, boolean, real32, real64, datetime, ref (reference
to a class name), charl 6.

Methods are unique within a class and represent operations that can be
invoked. Return type of methods conform to data types supported by CIM. A
method signature involves name of the method, return type, optional input
parameters, and optional output parameters. Return types must not be arrays.

Qualifiers are used to describe additional information about classes,
associations, properties, methods, indications, properties or references.
Qualifiers have name, type, flavor, scope, and optional default value.

An Association has references to two or more classes. Associations
represent relationships between two or more classes. It is treated as a
separate object with references attached to it.

An Indication signifies occurrence of an actual event. They may have
properties and methods and be hierarchically arranged. The indications are
either life cycle indications or process indications. The life cycle indications
signify creation, deletion or modification of a class or a creation, deletion,
modification, method invocation, and read access of an instance. The
process indications are other notifications that are not related to life cycle.

CIM Specification is described in a language called the Managed Object
Format (MOF).

4.2.3 CIM Core and Common Model

The core model comprises of a basic set of classes, properties and
methods that provide the basis for modeling of all managed systems. The
Core and common models follows the CIM Meta Model. The Core and
Common Models are together referred to as CIM Schema. The CIM
Common Models capture information related to particular areas of
management like systems, applications, networks, devices etc.

The core model lays down a basic classification of elements and
associations. The managed element class which is an abstract class forms the
base of the hierarchy. The Managed Element class is sub-classed into
Managed System Element, Product related. Setting and Configuration
related performance and statistical data related classes. Managed system
elements are sub-classed further into Logical and Physical Elements.

Enterprise Management and web services 107

The common models capture the information that is related to a
management area but is technology and platform independent. The Common
Models are continuously upgraded and added to.

The CIM Schema v 2.7 defines Common Models on the following

1. Applications: Deals with the structure of an application, life cycle
and the transition between states in the life cycle of an application.

2. Database: This schema describes the database system that describes
the application software, the logical entity of the database and the
database service.

3. Devices: The CIM Device Common Model describes a range of
hardware, their configuration information and their data. It covers
concepts like sensors, fans and batteries to storage volumes.

4. Events: The CIM Event Common Model covers the aspects of
publications, subscriptions and notifications.

5. Interop: The CIM InterOp Model describes the various Web Based
Enterprise Management (WBEM) components, namely the CIM
Client, CIM Server, CIM Object Manager, Provider. Please see more
details in the next subsection.

6. Metrics: The CIM Metric Common Model tries to generalize the
concept of transactions through the UnitOfWork concept.

7. Network: The CIM Network Model describes the network systems,
network services, logical interconnections and accesses, network
protocols (OSPF, BGP), networking technologies (VLAN,
Switching/Bridging), Quality of Service (meters, markers, queues)
and other related definitions.

8. Physical: The CIM physical Common Models describes the modeling
details of Physical elements (elements that occupy space and follow
laws of physics). CIMRacks, and CIMChassis are defined for
example as physical elements.

9. Policy: Policies are frequently describes as rules that change the
behavior of a system. The Policy Model has been developed jointly
by IETF and DMTF. It expresses policies as condition action pairs.
The <condition> term is a Boolean expression used to specify the
rule selection criteria. When for a resource the <condition> term
evaluates to true the <action> term is invoked.

10. Support: The CIM Support model deals with standardized way to
represent and communicate information, the process of obtaining
information, publishing and interpreting support information.

108 Chapter 4

// A class example: Man aged Element

[Abstract, Version ("2.7.0"), Description (
"ManagedElement is an abstract class that provides a common "
"superclass (or top of the inheritance tree) for the "
"non-association classes in the CIM Schema.")]

class CIMManagedElement {
[MaxLen (64), Description (

"The Caption property is a short textual description (one-"
"line string) of the object.")]

string Caption;
[Description (
"The Description property provides a textual description of"
"the object.")]

string Description;
[Description (

" A user-friendly name for the object. This property allows "
"each instance to define a user-friendly name IM ADDITION TO its "
"key properties/identity data, and description information. \n"
" Note that ManagedSystemElement's Name property is also defined

"as a user-friendly name. But, it is often subclassed to be a "
"Key. It is not reasonable that the same property can convey "
"both identity and a user friendly name, without inconsistencies."
"Where Name exists and is not a Key (such as for instances of"

Figure 28: CIM MOF description.

11. Systems: CIM System Common Model defines computer system
related abstractions. These systems are aggregation entities and are
not modeled as collections. They also deal with concepts like
systems, files, operating systems, processes, jobs, etc.

12. User: The CIM User Common Models deal with the general contact
information related to users, organizations, units of organization etc
and the clients of the services as "Users" and the security
authentication and authorization related information.

Enterprise Management and web services 109

4.2.4 CIM and Web-Based Enterprise Management (WBEM)

Web-Based Enterprise Management (WBEM) is an initiative coupling
CIM and Internet standard protocols and encodings (such as XML and
HTTP) with CIM. The WBEM architecture includes the notion of a CIM
server and various providers of management data, such as instrumentations.
The CIM server acts as an information broker between the providers of
instrumentation data and management clients and applications. This
approach shields providers from management clients and applications.

WBEM consists of a set of management and Internet standard
technologies standardized by the Distributed Management Task Force
(DMTF) with the goal to unify the management of enterprise computing
environments. WBEM provides the ability for the industry to deliver a well-
integrated set of standard-based management tools leveraging the emerging
Web technologies. The DMTF has developed a core set of standards that
make up WBEM, which includes a data model, the Common Information
Model (CIM) standard; an encoding specification, xmlCIM Encoding
Specification; and a transport mechanism, CIM Operations over HTTP.

WBEM is a set of technologies to unify enterprise management. WBEM
is comprised of the CIM model that we described in the previous section, the
xmlCIM encoding of CIM elements in XML, and CIM over HTTP
specification that enables interoperation across CIM systems. WBEM
operations could be simple or batched. The WBEM operationTypes are
include data, metadata. Queries and methods. WBEM operations include:
GetClass, EnumerateClasses, EnumerateClassNames, Getlnstance,
EnumeratelnstanceNames, GetProperty, SetProperty, Createlnstance,
Modifylnstance, Deletlnstance, CreateClass, ModifyClass, DeleteClass,
Associators, AssoicatorNames, References, ReferenceNames, ExecQuery,
getQualifier, SetQualifier, DeleteQualifier, EnumerateQualifiers.

xmlCIM tries to create an XML based grammar expressed in a DTD so
as to represent CIM information (classes, instances, methods), and CIM
messages for use by CIM protocols. CIM-XML uses xml-CIM as the
payload over HTTP transport.

The CIM specification is the language and methodology for describing
management data. The CIM schema includes models for Systems,
Applications, Networks (LAN) and Devices. The CIM schema will enable
applications from different developers on different platforms to describe
management data in a standard format so that it can be shared among a
variety of management applications. The xmlCIM Encoding Specification
defines XML elements, written in XML compatible to defined Document
Type Definition (DTD), which can be used to represent CIM classes and

110 Chapter 4

instances. The CIM Operations over HTTP specification defines a mapping
of CIM operations onto HTTP that allows implementations of CIM to
interoperate in an open, standardized manner and completes the technologies
that support WBEM.

Specifications include CIM Schema, CIM Operations over HTTP,
Representation of CIM in XML, and XML Document Type Definition.

WBEM is a set of technologies to unify enterprise management. WBEM
is comprised of the CIM model that we described in the previous section, the
xmlCIM encoding of CIM elements in XML, and CIM over HTTP
specification that enables interoperation across CIM systems. WBEM
operations could be simple or batched. The WBEM operationTypes are
include data, metadata. Queries and methods. WBEM operations include:
GetClass, EnumerateC lasses, EnumerateClassNames, Getlnstance,
EnumeratelnstanceNames, GetProperty, SetProperty, Createlnstance,
Modilylnstance, Deletlnstance, CreateClass, ModifyClass, DeleteClass,
Associators, AssoicatorNames, References, ReferenceNames, ExecQuery,
getQualifier, SetQualifier, DeleteQualifier, EnumerateQualifiers.

xmlCIM tries to create an XML based grammar expressed in a DTD so
as to represent CIM information (classes, instances, methods), and CIM
messages for use by CIM protocols. CIM-XML uses xml-CIM as the
payload over HTTP transport.

DMTF has developed a core set of standards that comprise WBEM
adding an encoding specification (the xmlCIM Encoding Specification) and
a transport mechanism (CIM Operations over HTTP) to the Common
Information Model. The xmlCIM Encoding Specification defines XML
elements (described in a Document Type Definition, DTD or XML Schema)
representing CIM classes and instances. The CIM Operations over HTTP
Specification defines how the CIM classes and instances are created, deleted,
enumerated, modified and queried. Also, the specification defines a
notification and alerting mechanism for CIM events.

4.2.5 TMF-TOM/eTOM

The Tele-Management Forum (TMF) introduced the Telecom Operations
Map (TOM) which focuses on the end-to-end automation of
communications operations services [eTOM]. The core of TOM is a service
framework that postulates a set of business processes that are typically
necessary for service providers to plan, deploy and operate their services.
These processes are organized using the TMN layering concepts and

Enterprise Management and web services 111

furthermore detailed to a finer granularity. TOM offers valuable concepts
and addresses aspects of service management using business processes.

TOM is a reference model for telecommunications networks. The TOM
reference model defines the description of core systems and processes
involved in the production operation of telecommunications networks. TOM
and eTOM are standards by the Telecommunications Forum (TMF). eTOM
is the updated framework that incorporates the complexity of the internet
economy and its opportunities. eTOM is proposed as a comprehensive
enterprise framework for service providers. eTOM is an ongoing TMF
initiative to deliver a business process model or framework for use by
service providers and others within the telecommunications industry. eTOM
describes all the enterprise processes required by a service provider and
analyzes them to different levels of detail according to their significance and
priority for the business. For such companies, it serves as the blueprint for
process direction and provides a neutral reference point for internal process
reengineering needs, partnerships, alliances, and general working
agreements with other providers. For suppliers, eTOM outlines potential
boundaries of software components to align with the customers* needs and
highlights the required functions, inputs, and outputs that must be supported
by products.

The eTOM Business Process Framework (BPF) represents the whole of a
service provider's enterprise environment. The Business Process Framework
starts at the Enterprise level and defines business processes in a series of
groupings. The Framework is defined as generically as possible so that it is
organization, technology and service independent and support of the global
community. At the overall conceptual level, eTOM includes following three
major process areas:

- Strategy, Infrastructure & Product covering planning and
lifecycle management.

Operations covering the core of operational management, and

- Enterprise Management covering corporate or business support
management.

4.2.6 Parlay/OSA

The Parlay Group [Parlay] is an open multi-vendor consortium formed to
develop open technology-independent application programming interfaces
enabling Internet and eBusiness companies, independent software vendors
(ISVs), software developers, network device vendors and providers, and
application service providers to develop applications and technology
solutions that operate across multiple networking platform environments.

112 Chapter 4

The Parlay group was formed in 1998. The Parlay group was initiated by
a group of operators, IT vendors, network equipment providers, and
application developers to support and enable interoperable mobile
applications. Parlay defined a number of API specifications. These
specifications are standardized with participation of the Parlay Joint
Working Group (JWG), which includes the Third Generation Partnership
Programs 1 and 2 (3GPP), and the European Telecommunications Standards
Institute (ETSI) Services Protocols and Advanced Networks.

Parlay integrates telecom network capabilities with IT applications via
secure, measured and billable APIs releasing developers from rewriting
those codes again and creating a homogeneous, standardized environment
for developing, delivering, measuring, and billing mobile web services.

4.3 Model Creation Process

A top-down approach for model creation follows the object oriented
development style (comparable to UML). It is shown in Figure 29.

An inherent characteristic of every service is that it involves two major
players: one offering and one requesting and using the service. There is a
provider side and a customer side. Both interact to accomplish a service. By
examining these interactions, conclusions can be drawn about the service
functionality without the need to take the service implementation into
account. Therefore, it is important to identify these interactions, which also
represent the service life cycle.

As it is impossible to identify every single interaction, an abstraction of
these interactions is needed. Classes can be used to group interactions. The
life cycle phases lead to a first grouping of interactions. The combination
with a functional classification leads to a classification matrix.

As interactions take place between a pair of roles representing e.g.,
organizational units on both sides, roles are assigned to interaction classes.
By examining the identified interaction classes and roles, interfaces can be
specified as well as components participating in service provisioning leading
to the final step of analysis, developing a service model containing objects
and relations on the basis of former identified interactions, interfaces and
roles. Finally, the recursive application of this model identification process
allows representing entire provider hierarchies [Hegering 2001].

Enterprise Management and web services 113

Service Life Cycle

Examining Interactions

Interactions according
to life cycle phases

Classifying interactions
functionally

Classification Matrix Roles

Identifying Objects and
RIationships

Service Model

Figure 29: Model creation process.

4.4 A Generic Service Model

It is difficult to define the term service in a universal way, not restricting
it to a small set of scenarios. The approach here is based on the top-dow^n
methodology presented in the previous section.

As starting point, service is defined as a set of interactions. But this is, of
course, not sufficient to determine all aspects of a service. To narrow down
the definition, the term service is more precisely defined through the
existence of the roles: user, customer as well as provider and through their
associations to the service.

These roles and associations are defined in the service model depicted in
Figure 30. The understanding of a service must be the same for customer and
provider side. The concept of "service orientation" advocates the
implementation-independent description of the service from the perspective
of the customer side. Side independent aspects can be found in the figure

114 Chapter 4

between the two domains symbolizing customer side and provider side. This
information is an integral part of service agreements.

The following steps can be used to refine the generic service model.

- A service is composed of one or more (composite) service
components. A service component is an independently distributed
and addressable piece of functionality and data.

- A service is driven by different classes of actors (using services) with
specific use cases (workload profiles, use patterns), which are
composed of tasks. Each class of actors may require different QoS
criteria.

- Tasks are service-defined pieces of "work" that are of interest to the
actors of a service, and to the management system. Tasks. In general,
may have three scopes: local, network and remote. The remote
scopes of a task are based upon component interactions, and are sub-
tasks of the original task.

- Each service component offers different service functionality through
its published interfaces.

H 3 L
Usage

Functionalrtv

Service
Agreement

n — J
' — substantiates '

J C
supplies

Service implementation

IL

Customer
Side

Side
Independent

Provider
Side

Figure 30: Example of a generic service model.

Enterprise Management and web services 115

Service interactions are based on the use of services. Interactions
may occur between different semantic levels of services: methods,
interfaces, objects, object clusters, or processes.

Interactions occur across a logical network providing connectivity for
one level of semantic interaction. Each logical network may have
specified minimum needs for QoS, which can be represented by
configuration rules. The logical network, when mapped to the
physical network represents actual node-to-node measurements from
network measurement systems.

Side Independent Aspects

According to the main interaction classes, the service consists of usage
and management functionality. Both types of functionality must satisfy a set
of QoS parameters. These parameters define the minimum required service
quality in order to be useful for the customer side. The QoS parameters
define qualitative as well as quantitative values.

The usage functionality covers the interactions needed by the user. These
interactions represent the actual purpose of the service and interactions
beyond the service's purpose that are needed to customize the service
according to user's needs and to control the provider's service provisioning.
These interactions are provided by the management functionality.

The service agreement substantiates the service by describing the usage
and management functionality as well as the QoS parameters.

The information presented so far describes the service used by the
customer side and provided by the provider side. To actually be usable, a
service interface between these two sides must exist. Service primitives,
protocols and physical connectors are represented by the service interfaces.

Interface definitions must also be included in the service agreement
(Page 228) to enable the customer side to access the service functionality.
The interface is the point where the responsibility of the provider ends. It can
be argued whether interfaces are or are not part of the service. When the
interface is not considered part of the service, this means that changing or
adding interfaces for service access does not result in a different service,
though the service agreement has to be changed.

In the same way usage and management functionality have been
separated, the interface is split up in a usage interface, often called the
Service Access Point (SAP), and a management interface, called the Service

116 Chapter 4

Management Interface (SMI interface) through which the corresponding
management functionality is accessible.

Customer Side

On the customer side, in most cases ch'ent software is needed to access
the service functionality. Such clients are in turn services and allow users
and customers to access the functionality at the service access point and the
service management interface.

Provider Side

The main task of the provider is to make the service available in the
promised terms that are part of the service agreement. This includes all
aspects of the service, namely the usage and management functionality to
meet the QoS parameters and the interfaces enabling the usability and
manageability of the service.

The provider has a service implementation, which realizes the usage
functionality of the service and implements the service access point. The
service implementation is considered the combination of the entirety of
knowledge, staff, software and hardware needed to realize the service's
usage functionality and the service access point.

The provider is also responsible for service management. This means, the
service is operated in a way keeping it above the agreed quality level, but
also optimizes the service operation according to the provider's goals like
efficiency and cost.

4.5 Recursive Application of the Service Model

Service models must be able to represent typical service chains with one
provider contracting services of another provider, and one service provider
acting as a customer of another. In such a scenario, an actor may take up the
the user/customer role and the provider role simultaneously. The modeled
associations between customer and the provider roles can be reused as
associations expressing the relation between provider and a sub-provider. A
model of the provider domain results by expanding the provider domain with
entities from the customer domain. This model contains the service
implementation and service management dependencies.

The service management of recursively composed services will use
functionality of the traditional network, system and application management
also in a recursive manner. As a consequence, there has to be a management
logic controlling management of chained services as well as of sub- service.

Enterprise Management and web services 117

4.6 Models for Diagnosis Rules

The following example illustrates how diagnosis rules can be modeled.
Each service task can be seen as subject to different QoS goals: either
derived directly from a SLA, or derived from the QoS goals of a service
interaction. If QoS goals are not specified, nominal values can be obtained
from previous observations of satisfactory operation of service.

The ability to correlate performance metrics available from different
subtasks is vital to a model of a service task. Based on knowledge of the
order in which subtasks occur, the model can diagnose the task performance
based on this metric. This correlation of task metrics is necessary for tracing
and diagnosing QoS failures within services.

Service tasks have nominal performance characteristics associated with
each workload to which they belong. These values are used for detecting
performance degradations, by simply comparing them with the current
performance of the task, or through a more complex assessment, that takes
into account task dependencies. A separate model may be used to adapt
these nominal values to changing environments [Matinka 1997].

RULE 1 [Task task] meetsClientRespTimeGoal IF

[task] qosGoals [QoSGoal goal] &

[goal] respTime [Real target] &

[task] clientRespTimeAvg [Real respTime] &

[target] greaterTlianOrEquals [respTime] &

[String currentTime] nowAndEvery [30000].

RULE 2[Task task] performanceBottleneck IF

[task] violatesClientRespTimeGoal [Real r] &

([task] cpu I

[task] ioBound I

[task] cliannelHosed I

[task] serviceBottleneck [Task service]).

RULE 3 [Task task] serviceBottleneck [Task service] IF

[task] subTask [service] &

(-[service] meetsClientRespTimeGoal |

-[service] meetsBaseLineGoal |

-[service] lowLatency).

Figure 31: Examples of performance rules for SLA observation.

118 Chapter 4

Figure 31 illustrates performance rules for SLA observation, which are
part of a model representing a service's behavior from the provider's point
of view. As an example. Rule 1 is a rule that monitors a task's response time
every five minutes. The '&' represents a conjunction (logical AND) and '|'
disjunction (logical OR).

Once the aggregate response time for a particular task violates its QoS
threshold, the diagnostic rules trigger a management event. These rules
examine all available measurements for that task in order to identify the
cause of the violation. In Rule 2, a task contains a performance bottleneck if
its response time QoS goal is violated, or the local (CPU and I/O) network
channel for remote services containing bottlenecks.

Other diagnostic rules may combine the service response times according
to the order and manner of their invocations.

5. SUMMARY

The evolution of enterprise computing has had a dramatic impact on the
role of system management, with system management and administration
proving to be a difficult issue for most organizations. With the demand for
IT organizations to provide more information faster and with greater
reliability and accuracy, IT organizations are seeking for solutions that help
them manage the integrated enterprise. Enterprise management systems
enables administrators to perform resource, system, and network
management, proactively manage systems and processes, automate tasks,
and add, remove, or modify functionality based on business needs.

The technologies that have been developed in the context of enterprise
management are quite useful in the domain of web services. Especially CIM,
ITSM, eTOM, PARLAY have capabilities that can be directly and indirectly
leveraged in undertaking model-based management of web services.

PART II

PERSPECTIVES ON WEB SERVICES
MANAGEMENT

Chapter 5

MANAGING WEB SERVICES FROM AN
E-BUSINESS PERSPECTIVE

1. INTRODUCTION

During the peak of the Internet bubble around 2000 and 2001, the "new
economy" was promising unbound growth by transitioning entire industries
and all spheres of life into an "e-world" of totally connected people,
organizations, and businesses. E-business was understood as business
mediated through electronic media, specifically the Internet and the Web.
Penetration of Internet and Web access had gathered the critical mass which
enabled and ignited the e-Revolution, which is now seen rather as an
evolution. This evolution is an ongoing transformation process during which
interactions between people and organizations are transformed into
ubiquitous information exchange through services created in the Web.

Web services initially emerged as services available on the Web, useful
functions that were accessible by users through the Web infrastructure. This
kind of Web services were characterized by human-to-servjce interaction
mediated though Web browsers at the client side and Web servers and back-
end applications at the service side. Extending the model towards service-to-
service interactions required formalization of exchanged data. HTML was
designed for browser interactions. HTML was not designed and thus is not
suitable for service-to-service interactions. XML brought the required
formalization and enabled a second wave of Web services, now between

121

122 Chapter 5

services that existed in the (pubhc or intra-) Web. XML-based Web services
have been characterized by the use of HTTP protocol as transport (the same
as used in the Web), SOAP (SOAP) as message exchange format, and XML
(XML) as universal format for representing data exchanged through
messages.

Universal connectivity provided by the Internet and the Web based on
standard protocols (IP and HTTP) allowed using Web services technology
for business purposes ranging from supply-chain integration to advertising
and retail purposes.

From their emergence, for human-to-service interactions and later for
service-to-service interactions, Web services had a close affinity to business
aspects, business that has been conducted over the Internet and the Web.
This affinity to business made Web services special compared to other
applications or software. Affinity to business also gave reason why
management of Web services [Machiraju 2002] does not only include the
technical aspects of running Web services applications and managing those
applications. Web services management also closely ties into business
aspects. The expectation has been (and is) that Web services management
technology can provide the bridge from business perspectives into technical
aspects of Web services. Business perspectives include the variety of
business models and the ability to evolve and adapt them quickly to
changing needs [Ray]. Business perspectives also include measurement of
business metrics and validation of the actual business conducted through
Web services based on technical measurements gathered and processed by
Web services management systems. Business perspectives also include the
transition from IT-driven operational and management models to business-
driven operational and management models. Realistically, the promise of
Web services management to smoothly link the business domain with the
technical domain has not been fulfilled. However, progress has been made,
progress that significantly expands over traditional applications and
management systems.

This chapter provides an overview of the current state of the art in
managing Web services, specifically from the business perspective.

This chapter addresses following aspects:

• The Method of Balanced Scorecards,

• Web services and Business Problems,

• The Customer Life Cycle,

• Web services Business Metrics.

Managing Web Services from an E-Business Perspective 123

2. THE METHOD OF BALANCED SCORECARDS

The method of balanced scorecards was introduced as an approach to
strategic management in the early 1990's by Robert Kaplan (Harvard
Business School) and David Norton (Balanced Scorecard Collaborative),
[Kaplan 1996], Recognizing some of the weaknesses of previous
management approaches, the balanced scorecard approach provided a clearer
prescription of what companies should measure in order to balance their
financial perspective.

The balanced scorecard is a management system (not only a
measurement system) that enables organizations to clarify their strategy and
translate them into action. The balanced scorecard provides feedback around
the internal business processes and external outcomes in order to
continuously improve performance and results.

Kaplan and Norton describe the innovation of the balanced scorecard as
follows: "The balanced scorecard retains traditional financial measures. But
financial measures tell the story of past events, an adequate story for
industrial age companies for which investments in long-term capabilities and
customer relationships were not critical for success. These financial
measures are inadequate, however, for guiding and evaluating the journey
that information age companies must make to create future value through
investment in customers, suppliers, employees, processes, technology, and
innovation."

The balanced scorecard suggests that an organization or a system is
viewed from four perspectives. The balanced scorecard also suggests the
metrics, to collect data and analyze it relatively to each of the perspectives.
The four perspectives are:

• The Learning and Growth Perspective,

• The Business Process Perspective,

• The Customer Perspective, and

• The Financial Perspective.

The Learning and Growth Perspective

The Learning and Growth Perspective includes employee training and
corporate cultural attitudes related to both individual and corporate
improvement. In an organization, people are the repository of knowledge. In
the climate of constant technological change, it is becoming necessary to
stay in a continuous learning mode. Government agencies often find
themselves unable to hire new technical staff, and at the same time they are
showing a decline in training of existing employees. This is a leading

124 Chapter 5

indicator of brain drain. Metrics can be put into place to guide managers to
fund training. Learning and growth constitute the essential foundation for
success of any organization.

Kaplan and Norton emphasize that learning is more than training.
Learning also includes mentors and tutors within the organization, as well as
communication among employees that allows them to get help on a problem
when it is needed. It also includes technological tools. One of these tools is
the Web and the organization's Intranet.

Financial

"To succeed
financially, how
should we
appear to our
shareholders?'

4>

>
O

3

CO

W
1
CD

>
.2

Customer

"To achieve our
vision, how should we
appear to our
customers?"

0)

>
a>
S
O

1 1
Internal Busines
Processes
"To satisfy our
shareholders
and customers,
what business
processes must
w« excel at?"

>S

«,
O

e
3

0)

S

1
h-

.2

Learning and
Growth
"To achieve our
vision, how will
we sustain our
ability to
change and
improve?"

>
E
O

3
IB
a>
S

1
1-

1

Figure 32: Four perspectives of the method of the balanced scorecard [Kaplan 1996].

The Business Process Perspective

This perspective refers to internal business processes. Metrics based on
this perspective allow managers to know how well business is operating, and
whether products and services conform to customer requirements (called the
"mission"). These metrics have to be carefully designed by those who know
these processes best. In addition to the strategic management process, two
kinds of business processes can be identified:

a) mission-oriented processes, and

b) support processes.

Managing Web Services from an E-Business Perspective 125

The Customer Perspective

Recent management philosophy has shown an increasing importance of
customer focus and customer satisfaction in any business. If customers are
not satisfied, they will eventually find other suppliers that will meet their
needs. Poor performance from this perspective is thus a leading indicator of
future decline, even though the current financial situation may look good.

In developing metrics for satisfaction, customers should be analyzed in
terms of kinds of customers and the kinds of processes for which a company
is providing products or services.

The Financial Perspective

Kaplan and Norton include traditional financial data in the financial
perspective. With the implementation of a corporate database about the
financial situation, it is aimed to automate gathering and processing this
information in ways that easily allow creating current views on the financial
situation.

2.1 Balanced Scorecard and Management

The balanced scorecard methodology builds on some concepts of
previous management ideas such as Total Quality Management, including
customer-defined quality, continuous improvement, employee
empowerment, and primarily measurement-based management and
feedback.

2.1.1 Double-Loop Feedback

In traditional industrial activity, quality control and zero defects have
been important. In order to shield customers from poor quality products,
efforts were made on inspection and testing at the end of the production line.
The problem with this approach is that the true causes of defects could never
be identified, and there would always be inefficiencies due to the rejection of
defects. Variation can be created at every step in a production process, and
the causes of variation need to be identified and fixed. This opens the way to
reducing defects and improving overall product quality. To establish such a
process, all business processes should be part of a system with feedback
loops. The feedback data should be examined by managers in order to
determine the causes of variation, the processes with significant problems,
and finally fixing that subset of processes.

The balanced scorecard incorporates not only feedback around internal
business process outputs, but also adds a feedback loop around the outcomes

126 Chapters

of business strategies. This creates a "double-loop feedback" process in the
balanced scorecard.

2.1.2 Outcome Metrics

"It is hard to improve what you can't measure." Metrics must be
developed based on the priorities of the strategic plan. The strategic plan
provides the business drivers and criteria for metrics to be measured.
Processes are then designed to collect the relevant information based on
these metrics and consolidate it into a numerical form for further processing
and analysis. Decision makers examine the outcomes of various
measurement processes and track the results in order to guide the company.

The value of metrics is in their ability to provide a basis for defining:

Strategic feedback to show the present status of an organization
from many of the four perspectives for decision makers.

Diagnostic feedback into various processes to guide improvements
on a continuous basis.

Trends in performance over time as the metrics that is tracked.

Feedback around the measurement methods themselves, and which
metrics should be tracked.

Quantitative inputs to forecasting and models for decision support.

2.1.3 Management by Fact

The goal of making measurements is to permit managers to see a
company more clearly and hence to make better long-term decisions. The
Baldrige Criteria [Baldrige 1997] reiterate this concept of fact-based
management: Modem businesses depend upon measurement and analysis of
performance. Measurements must derive from the company's strategy and
provide critical data and information about key processes, outputs and
results. Data and information needed for performance measurement and
improvement are of many types, including: customer, product and service
performance, operations, market, competitive comparisons, supplier,
employee-related, and cost and financial. Analysis entails using data to
determine trends, projections, and cause and effect that might not be evident
without analysis. Data and analysis support a variety of company purposes,
such as planning, reviewing company performance, improving operations,
and comparing company performance with competitors or with best
practices benchmarks.

Managing Web Services from an E-Business Perspective 127

A major consideration in performance improvement involves the creation
and use of performance measures or indicators. Performance measures or
indicators are measurable characteristics of products, services, processes,
and operations the company uses to track and improve performance. The
measures or indicators should be selected to best represent the factors that
lead to improved customer, operational, and financial performance. A
comprehensive set of measures or indicators tied to customer and/or
company performance requirements represents a clear basis for aligning all
activities with the company's goals. Through the analysis of data from the
tracking processes, the measures or indicators themselves may be evaluated
and changed to better support such goals.

3. WEB SERVICES AND BUSINESS PROBLEMS

Building and maintaining an effective presence in the Web is not only a
major corporate investment, but also a considerable technical challenge.
From startups to mid-sized players to industry leaders, companies are
looking to build and leverage their online brand in the Web, to gain market
share, to complement and accelerate their existing business models, to
reinvent their business and revitalize their value proposition.

These stages are shown in Figure 1.

Stage

site type

iiiiw^^

iiiiiiiliiill
iiiiiiiijî^̂^̂^̂^̂^̂^̂^

1

static

presence

low

small

2

dynamic

interactive

medium

moderate

3

e-commerce

revenue

high

significant

4

personalized

customer
relationship

very high

transformational

Figure 33: Stages of the Web services evolution.

The Web is both a practical platform for doing business, but also a rich
source of information about customer behavior. Its low cost of customer
contact makes it ideal for new methods of marketing. The earliest Web sites
were standalone attempts to publish useful but relatively static content.
Second generation Web sites became more dynamic, with rudimentary
customization. The third stage provided e-commerce, and the fourth stage
introduced an era of increased online personalization and more effective
relationship management.

From an architectural perspective, an early Web site was a simple Web
(HTTP) server, communicating with a file system populated with directories

128 Chapters

of flat HTML documents. It was a single-platform with a single-server in a
rather static world. Modem Web sites are groups of interconnected sites
consisting of multiple, geographically distributed software and hardware
servers, encrypted and non-encrypted areas, and dynamically generated
content. There are advertising services, content services, personalization
services, registration services, and e-commerce services, working alone or
together shaping the user experience. This heterogeneity makes it incredibly
challenging to build a complete and coherent view of customer behavior and
site activity.

To manage transactions and handle personalization, modem sites need
integration with other corporate operational and informational systems. Of
course, integration of different applications and data is not new. In the past,
integration has focused on direct applications such as Enterprise Resource
Planning (ERP), Customer Relationship Management (CRM), and Data
Warehousing (DW) in order to unify key areas of an enterprise. The Web is
a new integration platform for applications and data. The Web is able to
provide an actionable view of customers' online behavior. This unified
online view supports personalization and online interactions, as well as
segmentation and other aspects of analyses for decision support and targeted
marketing. And while back office systems are hidden from customers
through the Web services layer, applications and business functions behind
applications are exposing an organization to customers. Customers, on the
other side, are just "a click away from competition". The Web thus brings
incredible transparency of markets, goods, services and prices at a global
scale with almost no latency and at low cost.

This results in a new technical challenge for information technology. The
challenge is to build a corporate infrastructure that ties together CRM, e-
platforms, and site effectiveness through the right Web analysis. The issues
are to act and react quickly, to unify the CRM strategy across channels in
order to optimize the entire online business. However, unlike products,
pricing, and positioning which competitors can leam about and counter the
results of Web analysis can be kept within the organization and be used for
competitive advantage. The focus is on information and how to leverage it as
a strategic enterprise asset. Part of the enterprises value proposition has
always depended on the ability to integrate information assets, and the
growth of Web and emergence of Web services are accelerating that.

According to Forrester Research [Forrester 2000], Global 2500
companies spent an average of $41 million on their e-commerce efforts in
the year 2000. Corporations continuing investments in improving their
online capabilities, specifically also exploiting gathered information using
data warehouse applications. They need to understand whether their

Managing Web Services from an E-Business Perspective 129

investments are paying off. The question of Return on Investment (ROI) in
IT infrastructure is pressingly important. Corporations had expanded IT
infrastructure to accommodate demand from Web services in the past. Now
it is the time making use if the gathered information in more clever ways
supporting business strategy and business.

Web services management must provide the methodology and the tools
for enabling IT customers utilizing information assets understanding
business functions conducted and mediated though Web services. To
approach these questions, Web services business metrics are becoming the
central focus of a Web services infrastructure.

3.1 Key Business Areas Addressed by Web Services

Currently users are attracted to a Web site through advertisements, links,
affiliates, searches, or perhaps prior knowledge of a brand. A Web site may
further engage user interest through responsive marketing by providing
details, conveying a value proposition, making offers, and marketing
campaigns.

The goal is to get users to convert which may mean a purchase, a
download, an agreement, or a sign up. For the future, the expectation is that
they will stay loyal, return for support or to see what is new, bringing cross-
sell and up-sell opportunities as well as referrals.

This sequence is called the customer life cycle of a Web site shown in
Figure 34. Section 4 provides further refinement of the customer life cycle.

Attract
User

• Engage
User

^
•

Convert
User

— ^
Retain
User

Figure 34: First view on the customer life cycle at a Web site.

The first four business problems correspond to the progression through
the customer life cycle. Two additional business problems are important
across the customer life cycle: content effectiveness and the ROI on channel
relationships.

While every business is unique, certain questions typically arise in each
of these areas. Measuring the right Web services business metrics to answer
questions, analyzing the results, taking action in response, and then assessing
the impact is the path to solving these key business problems through Web
services management.

130 Chapters

Figure 35 summarizes the six key business problems addressed by Web
services management metrics and supporting systems.

1. Users

2. Marketing

3, Commerce

i 4. Loyalty

5. Content

6. Channels

Understand anonymous user behavior.

Maximize marketing and advertising ROI.

Evaluate multi-channel commerce effectiveness.

Optimize customer loyalty and life time value.

Analyze content effectiveness at complex, dynamic sites.

Assess affiliates and partner networks.

Figure 35; Key business problems addressed by Web services metrics and Web services management.

3.2 Business-to-Consumer (B2C) Domain

Basic purchasing facts about which products have been sold, when, and
to whom, provide only a very high-level view at the surface. On the Web,
management systems can see below the surface. This is where behavioral
ties can be found, user trajectories and paths, interests and focal points,
progress and decision processes, interruptions and bailouts, all these within
the context of individual users or user segments. Web services business
metrics allow looking below the surface, to draw the right connections and
guide actions in analysis and response.

Analysis leads to action for each of the questions above. For example, in
e-commerce an important question is to determine which site paths are
optimal for making a purchase. Knowing the answer can help to guide users
onto those paths. It can be made easier to find the right path from a pivotal
page on a Web site, or introduce shortcuts that get users faster to their goals.
It is important to reduce the risk of diversion once a user is on the right path.
It may also turn out that the optimal site path varies by user segment, and
that a self-selecting choice can lead users to the most appropriate path for
their segment.

There are five major categories of actions Web services metric analysis
can lead to:

- Reorganization of a Web site to improve navigability, ease of use,
likelihood of purchase, and stickiness.

- Segmentation of the customer base for selective, appropriate,
timely communications over multiple channels.

Managing Web Services from an E-Business Perspective 131

Using customer profiles, history, and offline context by
personalizing content, advertisements, and promotional offers.

Prediction of future customer behavior (such as likely to convert,
next product to buy, likely cart abandonment, likely area of
interest) to make the right offer at the right time.

Alignment with referring services/sites where advertisements are
most effective bringing profitable customers in reducing costs and
increasing profits.

Understanding users, their behavior and goals, and how to help them
achieving their goals is at the core of the analysis-to-action approach. Web
services business metrics are a major part of developing and understanding
effective scenarios.

3.3 Business-to-Business (B2B) Domain

While the six business problems above apply in principle to both
business-to-consumer (B2C) and business-to-business (B2B) operations,
especially to web services as they emerge as programmatic back-ends to
these web sites, there are additional subtleties in the B2B area.

A B2B marketplace serves both buyers and suppliers. Each party needs
to understand the effectiveness of the business model. Buyers want
personalized and streamlined transactions, at a competitive price. Suppliers
need a window into customer behavior and market dynamics. They want
profitable customers who are interested in their goods and services.

In providing suppliers with analytic information, the service provider
must assess the performance of the marketplace, the appeal of various
products, and the profiles of specific customers and customer segments.
Often, it is important to profile user behavior anonymously, prior to
registration, and to correlate this information with post-registration actions.

New business models have led to site innovations as well. Business
exchanges, auctions, so-called vertical portals, bargain-finding engines,
product configurators, and intentions-value networks (e.g., for relocation to a
new city) are changing the face of business-to-business interactions.
Suppliers are particularly interested in evaluating the business effectiveness
of different business models. And through the visibility they provide into
corporate inventories, the supply chain, tracking, and billing information,
monitoring and metering information is becoming a very important aspect of
B2B Web services.

Unlike end-consumer marketing, there is generally more information
available about corporations and their representatives. While the concept of

132 Chapter 5

a business customer is more complex, given corporate hierarchies and
purchasing roles within companies, user behavior is less random, with more
personalization possible based on prior behavior. Some corporations go as
far as setting up personalized Web pages for each business customer.

CUSTOMER LIFE CYCLE

The overall business economy has shifted from process, or product-
centric, to customer-centric and hence customer life cycle-centric. The
problem in the Web is that customers are invisible without clear definitions
of a user or a visit. People come to a Web site, leave footprints, and move
on. But those footprints are merely an indication that they were there.
Footprints contain the information, but tell little about people who visited a
Web site unless visitors are categorized in a spectrum from occasional
visitors to loyal customers. It is hard to measure effectiveness of a promotion
when its effect cannot be measured [Reiner 2001].

t'l^^fj. ::;|>oyal|||

Retention

Conversion Chum

Acquisition Attrition

Reach Abandonment

Figure 36: The customer life cycle from initial reach to final loyalty.

The Customer Life Cycle starts with reaching a target audience and
progresses towards an established loyal customer base. Of course, along the
way, many individual customer life cycles are cut by abandonment and
attrition.

Managing Web Services from an E-Business Perspective 133

The customer life cycle describes the points in the continuum where a
Web site:

Claims someone's attention.

Brings them into the sphere of influence.

- Turns them into a registered and/or paying customer.

Keeps them as a customer.

- Turns them into a Web site advocate.

The lines between these various stages depend on the deployed business
model. It makes a difference whether a Web site is primarily selling products
or services or a typical sale will take 5 minutes or 5 months. It is different
whether someone is trying to convince users to purchase a mortgage or
register for a personal home page. In a purely retail B-to-C environment, the
stages are typically much clearer than in a B-to-B environment.

5. WEB SERVICES BUSINESS METRICS

Traditional metrics deal with corporate value (price to earnings ratio,
market capitalization, fixed assets), corporate process management (cash
flow, net profits, customer turnover), and financial expectations (market
share, book-to-bill ratio, revenue per employee, etc.). Web service based
business interactions are shifting focus away from production, distribution,
and share of market, and closer towards customer needs, loyalty, and share
of budget. Not surprisingly, new Web services metrics are necessary. Web
services-enabled companies can reach millions of customers or members;
dramatically lower the cost of business, and connecting buyers and sellers
more efficiently than ever before. Every Web service or Web site can have
an affiliate program, broadening its reach. Banner advertisements, e-mail
promotions, and Web site changes are able to affect user behavior in real­
time. And users seek a positive experience with personalized treatment.

The new Web services business metrics translate the richly detailed
portrait of customer behavior into measurable elements of e-business
metered at the source of the Web service. These measures provide tangible,
actionable business information that impacts both the online and offline
sides of business. With Web services business metrics, the opportunity opens
to approach the Web from an objective, systematic perspective. A Web
service provider can become a better customer confidante, a better partner in
commerce, and a more trusted member of the customer value chain.

134 Chapters

From an architectural perspective, there are two interhnked halves. First,
raw measurements must be refined into Web services business metrics, and
then these resuhs must be processed to be easily understood and applied.

Web services business metrics begins with the hierarchy of Web site
activity, moving up from hits to page views to visits to users, and from users
to customers to loyal customers. Moving up in the pyramid, as shown in the
in Figure 37, means moving up from site design to customer behavior. There
is radically more business value at the top of the pyramid after processing
the large data volumes at its base.

LoyayCustipmers
assuming 10% retention Customer Data

;:iustomers\
ssuming 10% conversion

Web-Business Data

ing 5 visits per user

assumiiip 5 page views per visit

Views
assuming \\ hits per page

Raw Web Site Data

Figure 37: Transitioning from Web site hits to business-relevant customer data.

Whether the end goal for Web site users is pure commerce, exchange of
requirements and quotations, registration for a service, joining a community,
or just acquiring timely and relevant knowledge, a major objective of Web
services business metrics is to track users through their life cycle.

The essential Web services business metrics tracks transitions through an
ideal sequence of reach, acquisition, conversion, retention, and loyalty.

But between clicking on a banner advertisement and making a purchase
or other action, there are many points where a customer may fall out of the

Managing Web Services from an E-Business Perspective 135

life cycle. Web services business metrics that measure interruptions to the
life cycle can help to get a handle on abandonment, attrition, and chum rates,
and their relationship to the warning signs of customer behavior.

Another set of Web services business metrics can help segment users by
answering the vital question of determining their best customers. Recency,
frequency, monetary value, and visit duration are relevant. Yield, or the
measurement of first-level goals such as the percentage of users who return,
provides an indication of the monetary value of each user. When costs are
considered along with customer value, a new set of Web services business
metrics appears, such as acquisition cost, cost per conversion, and net yield.

There are many fundamentally new Web services business metrics that
provide actionable insights into customer behavior. Stickiness is a measure
of site content effectiveness and the ability to hold users attention. Tracking
stickiness for specific content areas allows site production staff to quickly
identify under-performing pages or sections, while sticky customer segments
represent core constituencies and opportunities for deepening relationships.
Slipperiness is equivalent to low stickiness for a particular area of a Web
site. Focus may be wide or narrow based on how many pages in a site
section are touched by an average visit.

The rate of customer movement along the life cycle is known as velocity.
The junctures where a customer is exceptionally susceptible to an offer are
critical moments. The revolving door ratio is the ratio of visit entries to visit
exits for a particular area of the site. Information about so-called black holes,
or areas of a Web site where many people are drawn in but few emerge, and
so-called worm holes, or consecutive page views between pages that are not
directly linked (e.g., how did a user go from the top level product page to the
third level support area?). Also the average lifetime of unsolicited pop-up
windows, provides essential information.

The personalization index of a Web site is a measure of how well
collected customer profile information is used. Customer life cycle value,
traditionally calculated from expected purchases, referrals, and margins, is
given a new perspective on the Web through the potential cost savings this
medium allows. Loyalty value is a comprehensive Web services business
metric involving not just purchases, but also including information about
visits, referrals, and participation intensity. The freshness factor measures
the refresh rate of content compared to visit frequency for areas of content.
This tells how often users are seeing fresh content when they visit.

The combination of Web services business metrics with other Web
services business metrics, including traditional measures, is a powerful
technique for revealing and utilizing information gained from the

136 Chapters

interactions mediated though a Web site (or a Web service) as a prerequisite
for turning this information into a competitive advantage.

The following list shows some further examples of typical business
problems paired with Web services business metrics:

• identify the most valuable customers early on using the customer
life time value grouped by the type of initial site visit;

• better differentiate the appeal of content across the user spectrum
by looking at return rates on Web content grouped by user
segments;

• understand how visit behavior is changing over time since the
first visit by evaluating visit recency compared to user tenure;

• characterize the impact of increased loyalty on visit and purchase
behavior by looking at the depth of site penetration and single
visit conversion rates compared for first time users and returning
users;

• measure how quickly users are getting where they want to go by
assessing the average number of page views to reach preferred
content grouped by user segments;

• locate the greatest opportunities for increasing conversion
derived from page exit rates compared along the optimal
purchase path; and

• distinguish affiliates who refer many users from ones who may
refer less users but bring more valuable ones by referring to
acquisition cost compared to conversion cost.

5.1 Web Services Business Metrics Classification

The following table summarizes Web services business metrics
structured in four major categories [Reiner 2001]:

- Customer Life Cycle Metrics (refer also to section 4),

- Customer Metrics,

- Customer ROI (Retum-On-Investment) Metrics, and

Web Site Behavior Metrics.

Each category names several measured, which can be determined and
used of analytical purposes [Cutler 2001].

Managing Web Services from an E-Business Perspective 137

Customer Life
Cycle Metrics

Rates for:

- reach.

- acquisition,

- conversion.

- retention,

- loyalty;

Rates for:

- abandonment,

- attrition,

- chum.

Customer
Metrics

Measures for:

- recency.

- frequency,

- loyalty value:

in the:

- retail.

- high-priced
domain.

- business-to-
business
domain,

- monetary
value.

- duration.

Customer ROI
Metrics

Cost per
customer:

- acquisition cost.

- cost per
conversion.

- net yield.

- connect rate,

- growth rate.

- customer ROI
and customer
net yield.

Web Site
Behavior Metrics

Measures for:

- stickiness.

- slipperiness.

- focus,

- velocity,

- seducible
moments.

- optimal site
path.

- personalization
index.

- freshness factor.

Figure 38: Classification of Web services business metrics.

5.1.1 Customer Life Cycle Metrics

The customer life cycle has been introduced in section 4. Measures for
reach, acquisition, conversion, retention, and loyalty as well as for
abandonment, attrition, and chum can be obtained by calculating respective
rates comparing to the total number of customers:

X == { reach, acquisition,
conversion, retention,
loyalty, abandonment,
attrition, chum }

Rate(x) =
total number of customers

Figure 39: Calculating rates for customer life cycle metrics.

138 Chapter 5

5.1.2 Customer Metrics

The RFM method (Recency, Frequency, and Monetary value) is widely
used to describe metrics for best customers. Analysis of these metrics helps
answering one of the most fundamental questions in marketing: Who are the
best customers? Using past transactions, each customer is viewed
simultaneously in three different dimensions:

- Recency: Has the customer recently made a purchase or visited the
site?

- Frequency: How often has the customer placed orders or visited a
site historically?

- Monetary value: What is the customer's total spending and what is
his or her profitability?

Each dimension provides an insight into a customer's purchasing
behavior:

- Recency: Statistical analysis has shown that customers who have
made a purchase recently are more likely to purchase again in the
near future.

- Frequency: Frequent purchasers are likely to repeat purchasing
into the future.

- Monetary Value: Customers with high spending in the past are
likely to spend again in the near future. This dimension is different
from frequency by that it identifies customers who place infrequent
but high value orders and, therefore, could be highly profitable.

Dividing customers into a number of segments using clustering methods
based on recency, frequency, and monetary value helps to identify and
profile customer segments that are not intuitively obvious or visible from
other forms of reports and represent significant opportunities.

Recency

Recency is a core measure that describes how long it has been since a
Web site recorded an event from a customer (e.g., site visit, product
purchase, etc.). Recency is generally considered to be the strongest indicator
of future behavior. According to RFM, the likelihood that users purchase
tomorrow can be calculated from past experience. Timescales are different
depending on products. A loyal luggage buyer may buy a suitcase once
every three years. Milk, bread and egg buyers tend to shop weekly.

When browser-based cookies appeared, they were primarily used to
welcome people back and let them know how that, for instance, the site had

Managing Web Services from an E-Business Perspective 139

changed since their last visit. Knowing when somebody was last at a site is
an important part of user profiling.

As recency diminishes with the time since the last activity or event
increasing, the potential for future purchases decreases. Eventually, a pre­
determined amount of time lapses and the user can be considered attritioned.
In an attempt to reactivate customers, different offers might be targeted to
different users. This can be sometimes found in practice. Amazon.com notes
the consistency of customer visits and their purchases and sends out an e-
mail with gift certificate when customers fall out of their normal purchasing
patterns.

Frequency

Frequency is a measure that answers another important question:

"I want to know how many people are coming every day and how
many."

Users may visit hourly, daily, weekly, monthly, or other periodic
patterns.

Loyalty Value

It is useful to have a metric indicating the loyalty of customers. However,
loyalty is very specific to market segments and companies and involves a
large number of variables.

For instance, if a customer has an e-mail account at Yahoo and checks it
every day, he or she would earn a high loyalty rating from Yahoo. However,
if a customer also maintains an e-mail account at Hotmail and checks that
one daily as well, then he or she are not really as loyal as Yahoo might think.

Measuring the loyalty of a Web site user means creating an index that
can be used daily to see how changes made to the Web site affect customers.
A study (Bain & Company) indicated that the average Amazon.com
customer must remain loyal for approximately 2.5 years in order to become
profitable. Each site should create a loyalty ranking system depending on its
goals and its experience.

In the following, three scenarios are discussed of different meanings of
loyalty in different domains:

- Loyalty in retail domain,

- Loyalty in high-priced domain, and

- Loyalty in business-to-business domain.

140 Chapters

Loyalty in Retail Domain

A customer coming to a florist Web site four times a year may be
considered a very loyal customer. A wedding anniversary, Valentine's Day, a
spouse's birthday and Mother's Day are the major flower-giving occasions. A
one-time-only customer can be encouraged to come back for another holiday
as can the customer who only comes twice a year. But the customer who
comes four times needs special enticement to increase his or her frequency.

A dollars-off coupon, a bouquet-of-the-month club, or a "buy ten, get one
free" offer may appeal to them. Offers can be tested at each level of
frequency in order to increase response rates.

Customer loyalty can be measured in purchases. How much does a
customer buy? How often does he or she buy? Are they profitable
customers?

The formula to calculate loyalty will include the following variables:

- Visit frequency: Scored based on number of visits per month

- Visit duration: Scored based on number of minutes per visit

- Visit depth: Scored based on number of page views per visit

Purchases per visit

- Number of items purchased per visit

- Total revenue of purchases per visit

- Profitability of purchases per month

If additional marketing programs are implemented, the customer might
be evaluated on factors such as:

- Number of referrals per month: Did the customer refer others?

- Value of referrals per month: Did those referrals buy? How much?

- Questionnaire propensity: How willing is the customer to answer
survey questions?

- Contest participation: How willing is the customer to participate in
contests?

- Reward points program: How willing is the customer to participate
in affinity programs?

Loyalty in High-priced Domain

Expensive items create a different pattern of site visits. The occasional
click-through at the start of the process initiates a steadily increasing number
of visits up to the moment of purchase. If these traffic patterns are properly
modeled, they can lead to a clear indication of when the sale may occur.

Managing Web Services from an E-Business Perspective 141

With this knowledge and some data mining techniques, a company can build
predictive models to be more proactive by launching e-mail campaigns,
dynamically alter the site or have a sales person call. Manufacturers can use
that information to notify their distribution chains about potential sales.
Service organizations can watch customer activity to determine the right
moment sell. Training departments can track frequency to decide when to
offer additional courses.

Loyalty can be measured on a short-term basis. It can also be measured
on a longer-term time scale.

If a customer is buying a refrigerator, chances are good that she will not
need another one for years. Those customers can be kept in the database for
later years. Insurance companies keep information on newborns in their
database for decades in order to offer additional auto insurance when they
reach driving age.

Loyalty calculations are based on the same variables as in the retail
domain, but apply with slight modifications:

- Visit frequency - scored based on visits per decision period and
mapped to a decision-making curve. Buyers of one type of product
will visit a certain number of times in the first period, a certain
amount in the middle of the process, and signal that a buying
decision is actively being made when they increase (or decrease)
the number of visits in a defined time span.

- Visit duration - scored per session. This is another indication of
how close to a decision a visitor may be.

- Visit depth - page views per visit are as important as frequency
and duration.

Site path - shows how well a visitor is following an optimal site
path.

- Contact - tells how often a visitor shows initiative by sending e-
mail, engage in a chat session or fill in a form on the site. It is
important to analyze what kind of questions the visitor asks?

Loyalty in Business>to-Business Domain

Frequency becomes even more important when the relationship between
parties is on a longer-term basis. When the Internet is used instead of
Electronic Data Interchange (EDI), the pattern of visits and orders can be
very informative, as the Web site traffic becomes the pulse of the business
relationship. If a steady customer with a predictable pattern of visits changes
browsing and buying pattern, this may indicate that human intervention can
help increase the spending potential. Frequency information can provide

142 Chapters

insight into a customer's experience, expose a shift in customer staff, or
signal the possibility of increased (or decreased) business.

In the business-to-business domain, the emphasis on selling is replaced
with a focus on service. Taking orders and solving problems are most
important. Loyalty appears in many shapes and sizes in the business-to-
business domain. Loyalty metrics naturally differ greatly between different
sites with different business models.

- Visit frequency: In the business-to-business domain, the
consistency needs to be observed. Is the customer coming to the
site in regular intervals and doing what is expected?

- Visit duration: Can changes in the amount of time it takes a
customer to place an order be observed?

- Visit depth: Is the customer looking at products beyond the regular
pattern?

- Visit tenure: Time elapsed since first visit.

Purchase tenure: Time elapsed since first purchase.

- Purchase frequency: Number of purchases per quarter (or month or
other fixed interval).

- Total life time spending: Total spending since first visit.

- Visit recency: Time elapsed since most recent visit.

- Purchase recency: Time elapsed since most recent purchase.

Required clicks to first purchase: Minimum number of clicks
required to complete the first purchase in a visit. The first purchase
may require more clicks than repeat purchases.

- Required clicks to repeat purchase: Minimum number of clicks
required to make a repeat purchase.

- Actual clicks to first purchase: Actual number of clicks until the
first purchase was made.

- Actual clicks to purchase: Number of clicks until a purchase.

These variables provide input for higher metrics such as first purchase
momentum:

T^' ^ u 4. required clicks to first purchase First purchase momentum = J L
actual clicks to first purchase

Figure 40: Calculating the first purchase momentum.

and repeat purchase momentum:

Managing Web Services from an E-Business Perspective 143

T̂ , J t , required clicks to repeat purchase Repeated purchase momentum = _! i i
actual clicks to repeat purchase

Figure 41: Calculating the repeated purchase momentum.

Monetary Value

The monetary value of a visitor can only be estimated until a purchase is
made. A visitor who comes once a day for a week is assigned a much higher
probability of purchasing than one who comes once every three months. As
soon as a visitor becomes a customer, actual monetary value can be derived
from spending and profit margin data. Information can be derived over time,
how much does a customer buy per month? How profitable are those sales?
What are the characteristics of a high spending customer versus a low
spending customer?

Different sites will have different indexes for purchase probability and
profitability. Historical ratings of actual customers are of great value. These
are the numbers that help to recognize which users are most likely to become
profitable buyers.

Duration

As it applies for recency and frequency, the duration of an individual's
visits can be a clear signal of intent and a forecast of a possible change in the
relationship. Different companies have different goals for the duration of
visitors staying on their sites.

A technology company that offers to technologists may want to shorten
the duration of each visit because their customers may repeatedly tell that
they are busy. Those customers are not coming to the site to find product
information quickly. When the pages load faster, when the information is
easier to find, when customers can make a decision more quickly, they are
happier and appreciate it with more business.

Retailers such as Bamesandnoble.com or Amazon.com want people to
stay as long as possible. They want a visitor who looks for something as
general as "cooking" to see the wide variety of available products. The
visitor will find books, but might also find cooking software, kitchen
appliances and cooking games and videos. But once a buying decision has
been made, retailers make it as easy and as fast as possible to complete the
purchase. Express checkout simplifying and accelerate the purchase process.
Obtaining user information from available profiles rather than asking the
customer also speeds the purchasing process up. Retailers in the Web

144 Chapters

observe the same trend as traditional retailers: fast check-out reduces
shopping cart abandonment.

In the case of a considered decision purchase for a higher-priced product,
the length of a stay may indicate the seriousness of the buyer. If a visitor
stops to look at something for only a minute or two, that visitor profiles
differently from a visitor who spends an hour in reviewing options.

In combination, the elements recency, frequency, monetary value, and
duration paint a detailed picture of how a site is used and where changes can
be made to increase its yield.

5.1.3 Customer ROI Metrics

Determining the monetary value of individual customers includes
accounting for the associated costs of transitioning them through the
customer life cycle, converting them into customers and holding their
attention. This cost is reconciled over the customer life cycle starting with
the cost of initial contact, through the acquisition phase, and finally through
conversion.

Acquisition Cost

The acquisition cost calculation determines the value of a given effort for
initial contact over a given period of time. If $25,000 spent on 1,000,000
banner advertisement impressions yields a 0.5 percent click-through rate, the
result is 5,000 visits or $5.00 per acquired user.

. . .̂ . ^ advertising and promotional costs
Acquisition cost = r L

number of click-throughs

Figure 42: Calculating acquisition cost.

Cost Per Conversion

If $25,000 are spent on a marketing program, and 5,000 visitors were
acquired, and 5 percent of these visitors have been converted, this results in
250 new paying customers. The cost per conversion was $100. This is
reasonable for high-priced products such as real estate to high-income
professionals, but it is not sustainable for low-priced products.

The cost per conversion is the number that marketing people use to
determine the best investment of their promotional budget. Spending $2
million on a Super Bowl ad campaign may seem like a large check to write.

Managing Web Services from an E-Business Perspective 145

But if the resulting traffic and sales produce an acquisition and conversion
cost below alternative means, the cost may not be so alarming.

r. ^ • advertising and promotional costs Cost per conversion = r i
number of sales

Figure 43: Calculating customer conversion cost.

Net Yield

Yield is defined as the annual rate of return on an investment, expressed
as a percentage. While meant to describe yield on general financial
investments, this definition also applies to Web services metrics.

Yield is the measurement of how well a site is reaching its first-level
goals: How many visitors have been attracted by promotions? How many of
them returned two months later? How often do they return? Answers to these
questions determine the shape of the customer life cycle and provide an
indication of the monetary value of each user.

xj t • Id = total promotion costs
total promotion results

Figure 44: Calculating net yield.

Two examples illustrate how net yield calculations can help in decision­
making processes:

- Banner A had a high click rate, but a low conversion to sale.
Banner B had a low click rate, but a high conversion to sale. By
comparing the net yield calculations for Banner A against Banner
B, it can quickly be identified the better-performing banner.

- For a Web-based contest, some users might receive an intermediate
start page before the registration page, while others might be
directed to the entry form immediately. To determine the optimal
path in terms of conversion, the net yield would be calculated by
dividing the total number of contest entries by the total entry page
visits. This allows determining whether an interstitial start page
helps users to understand the contest making form completion
more likely, or if it causes abandonment before forms are filled in.

Connect Rate

A promotion's connect rate is useful for identifying potential technical
issues in page loading or tracking mechanisms. The connect rate measures

146 Chapters

the number of visitors who clicked on a banner or link and then successfully
have been directed on a targeted page.

' t t = promotional page views

promotion click-throughs

Figure 45: Calculating the connect rate.

Ideally, the connect rate should be equal or close to 1, showing that every
visitor who clicked on a promotional banner or link successfully was
directed to the subsequent promotion page. If the connect rate falls below
0.80, it means at least 1 out of 5 click-throughs failed reaching the
destination page. This might be due to server time outs or visitors clicking
the stop or back button. It will affect acquisition numbers.

If the connect rate decreases below 0.80, the impact is substantial. For
5,000 click-throughs, only 4,000 visitors actually visit the target site,
resulting in an acquisition cost of $6.25 rather than $5.00. Assuming the
same 5 percent conversion rate, now 200 customers convert for a cost per
conversion of $125. In this case, a connect rate of 0.80 resulted in 50 fewer
paying customers and a $25 premium on cost per conversion.

Growth Rate

The growth rate indicates at what pace a site is growing in terms of
visitors and converted customers, and in effect, in terms of yield and sales.

For example, a company has 2,000 subscribers on the first of the month.
During the month, 200 new subscribers have been added and 50 subscribers
have been lost. By the end of the month, there are 2,150 subscribers. The
chum rate (see section 5.1.1) is 50 divided by 2,150, which equals to 2.3
percent.

The growth rate for the month is 200 divided by 2,000, which equals a 10
percent growth rate. Annualized, this means (assuming continued averaging
the same performance each month) the company has a 27.6 percent chum
rate and a 120 percent annual growth rate.

P ^ K ^ ^ customers(end) - customers(begin)

total customers(end)

(in percent)

Figure 46: Calculating the growth rate (by example of converted customers).

Managing Web Services from an E-Business Perspective 147

Customer ROI - Customer Net Yield

Net profits are the easiest and most intuitive metric to determine return
on investment (ROI). ROI alone does not alone counts for great customers,
nor does ROI alone offers insight into maximizing customer life time value.

The following metrics focus on modeling, measuring, and influencing the
transition from initial visitors to finally loyal customers.

Every successful sales and marketing organization tracks the sales
pipeline. How many initial visitors have been converted? How long did it
take to convert them? What were the necessary steps converting them?

If quick-decision, low-priced items are sold, the conversion process
occurs during the marketing and advertising process. For higher-priced
products, the process may involve a product demonstration or trial,
committee meetings, outside consultants and client reference conversations
before the sale is made.

The following are the typical stages of a sales cycle:

- Prospect: Someone who has responded to a promotion, expressing
interest in making a purchase.

Suspect: A suspect who fits the profile of current customers.
Valuable for targeting advertising and promotional efforts.

- Qualified prospect: A prospect who has been contacted and their
need, desire, and ability to purchase have been verified.

- Closing prospect: A qualified prospect about to become a
customer.

- New customer: One who has just made a purchase.

- Novice customer: One who is in the process of implementing the
product and getting training.

- Unhappy customer: One with a problem to solve.

Referring customer: A happy customer who is willing to talk to
qualified prospects.

- Company advocate: A very happy customer who helps to recruit
new customers.

Tracking the life cycle status of a Web site allows customizing and
tuning the site for each user. It also provides insight into the customer life
cycle.

From a management perspective, these aggregate numbers are the most
important result of the tracking illustrated in the table. If it is known that it
takes 1,000 suspects to find 100 qualified prospects and that only 10 percent

148 Chapter 5

of those will end up as customers, then this information can be used as a
sales forecasting tool.

The power of this technique increases after reiterating the model over a
period of several months. Rather than relying on estimates, the customer life
cycle model can be adjusted as monthly or weekly sales are incorporated
into the model making it increasingly accurate over time. Web services
metrics are becoming the central to decision points about staffing, quotas,
promotions, and production capacity.

Metric Definition Value
If improved̂ ncrease in

by 10 company
percent value

Acquisition

Visitor acquisition
cost

New visitor
momentum

Marketing dollars spent per
visitor

Increase in number of new
visitors in 2Q vs. IQ

$5.68

62.4%

$5.11

68.6%

0.7%

3.1%

Conversion

New customer
acquisition cost

New customer
conversion rate

New customer
revenue
momentum

Marketing dollars spent per
visitor

Percentage of new visitors who
become customers

Increase in new customer
revenue, 2Q vs. IQ

$250

4.7%

88.5%

$225

5.2%

97.4%

0.8%

2.3%

4.6%

Retention

Repeat customer
maintenance cost

Repeat customer
revenue
momentum

Repeat customer
conversion rate

Customer chum
rate

Operating expenses (without
marketing) spent per repeat
customer

Increase in revenue from repeat
customer, 2Q vs. 1Q

Percent of customers who
become repeat customers

Percent of customers who do
not become repeated customers

$1,931

21.0%

30.2%

55.3%

$1,738

23.1%

33.2%

49.8%

0.7%

5.8%

9.5%

6.7%

Figure 47: Bottom-line impact of improved retention.

The table shown in Figure 47 is based on a recent McKinsey & Co.
report. The table illustrates how improving retention can have significant
impact on the bottom line. This report concluded that the cost reductions are

Managing Web Services from an E-Business Perspective 149

considerably less valuable to the company than the opportunities to decrease
abandonment and attrition [Cutler 2001].

5.1.4 Web Site Behavior Metrics

The greatest value of a Web service or a Web site is its accessibility.
From anywhere in the world, at any time, any prospect or customer can
contact a Web service or a Web site. A Web service or a Web site can
remember everything about the visitors such as when they arrived, what
pages they look at, how long they spend on each page, which products they
find the most interesting and more. Privacy considerations are important and
must be considered throughout any customer information gathering process.

In the following sections a number of fundamental metrics are presented
that are designed to provide insight into customer behavior at a Web site and
providing actionable information. These metrics include:

Stickiness,

Slipperiness,

- Focus,

- Velocity,

Seducible moments,

- Optimal Site Path,

- Personalization Index, and

- Freshness Factor.

Stickiiiess

Stickiness is related to both duration and frequency. Stickiness is a
composite measure that captures the effectiveness of site content in terms of
consistently holding visitor's attention and allowing them to quickly
complete their tasks. In general, sticky sites are considered more effective
than sites that are not very sticky. Little consensus has emerged how to
calculate stickiness. One is presented here:

Stickiness = frequency * duration * total site reach

where:

number of visits in time j>eriod T
Frequency =

number of unique users who visited in T

and:

total amount of time spent viewing all pages

150 Chapter 5

Duration = number of visits in time period T

and:

T. , , . , number of unique users who visited in T
Total site reach = _!

total number of unique users.

Figure 48: Calculating stickiness.

The following example illustrates a typical stickiness calculation.

A Web site has acquired a total of 200,000 unique users. Over the past
month, 50,000 unique users went to the site. These 50,000 users accounted
for a total of 250,000 visits (average frequency of 5 visits/unique user for the
month), and, during these visits, the users spent a total of 1,000,000 minutes
viewing pages on a site.

Therefore:

Monthly ^
stickiness

250,000 visits

50,000 active
users

1,000,000
minutes

250,000
visits

50,000 active
users

200,000 total
users

Monthly stickiness = 5 minutes/user.

This stickiness calculation can be applied to entire sites or sections of
sites, and can also compare trends between different customer segments.

Slipperiness

Some areas of a Web site have higher customer value when they have
very low stickiness, for instance, customer support. In this example, the
customer support site is supposed to be slippery, not sticky, meaning that
visitors quickly find what they are looking for and get out quickly.

The purchase completion and checkout section of a Web site also is
recognized to be better when it becomes more slippery. Every additional
click required to make a purchase represents another opportunity for the
customer to change his mind and abandon the purchase.

Slipperiness is equivalent to low stickiness. Given the three factors of
stickiness, a slippery measure can be seen as the reverse of the stickiness
formulas.

Managing Web Services from an E-Business Perspective 151

Focus

Focus is another concept related to page visit behavior within a section of
a site. Assume there are 15 pages in a section. A focused visit may touch 2
or 3 of these, a less focused visit might touch 5 or 6 of them, and an
unfocused visit might touch 8 or 10 of them in order to reach the target page.

Therefore:

average number of pages visited in a given section
Focus =

total number of pages in the section

Figure 49: Calculating the measure for focus.

If the average visitor views 3 pages in a section out of 15, then the user's
focus in that content section is 0.20. Smaller values for focus are referred to
as narrow focus while larger values are called wide focus.

The answer whether wide or narrow focus is better depends on the type
of the section and on the user behavior considered as desirable for that
section. A sticky area of content is likely to be a good indication, a sticky
checkout section may signal an unnecessarily complex checkout process.
Narrow focus is good at a customer service area, but eventually not at an
online auction section of a site.

Figure 50 relates stickiness and focus in combination for a given section
of the site.

Wide Focus

Narrow Focus

Low Stickiness

Either quick satisfaction or
disinterest occurs in this
section. Further
investigation is required.

Locate the correct
information quickly.

High Stickiness

Either interest on this
section, or users are drawn
in. Further investigation is
required.

Browsing indicates a site
magnet area.

Figure 50: Relating focus and stickiness.

Since certain combinations are open to multiple interpretations, optimal
site path analysis will help to identify reasons when surprises occur in
analyzing these metrics. The combination of stickiness and focus for an
entire site or a specific section of a site is generally more powerful than
stickiness alone.

152 Chapters

Velocity

On a more tactical level, tracking the customer life cycle provides the
information to improve a Web site and optimize for objectives such as total-
life time customer experience (taking a comprehensive set of factors into
account).

Velocity is the measure of how quickly a visitor moves from one stage of
the customer life cycle to the next. Clocking prospects' qualification process
provides the average amount of time that it takes for a member of a given
market segment to pass from awareness, through deliberation, to final
decision.

With a specific time span in mind, the site designer can test alternative
navigation techniques, in combination with the marketing expert
experimenting with different offers. Between the two roles, they can identify
so-called seducible moments.

Seducible Moments

Seducible moments are junctures where a prospect is exceptionally
susceptible to an offer. It might be caused by a rapid purchase button next to
a desired product, or it might be a cross-offer at the moment a customer is
deciding between two service choices. A seducible moment does not
necessarily have to be related to the product. It can be the point where a user
must decide to join a discussion group or subscribe to a newsletter. The right
encouragement or the right graphic might help to overcome these hurdles.
These seducible moments will be different on every site.

Reviewing the profiles of members of a given market segment reveals
different attributes of those who slowly decide and those who quickly buy.
Adjusting promotional efforts toward those with a higher velocity rating can
have direct effect on bottom line sales.

Managing Web Services from an E-Business Perspective 153

Suspect

Home
Page

\

- •

\
Clmlng
Customer

' ' '̂ '̂ ' ; './î

Over­
view

Products

N

->

- •

^

Techn.
approach

Account
Creation

Add-on
Products

•4 •' > y;i—.-i\-.

->

- * •

d

Product
Set

Terms
of Use

i \

- # •

\

•v ' 7M.^-^''^ ~̂ ~̂ } , Y ;

Require­
ments

Pricing

FAQ

Need Account
- • Analysis - • A p p l i c a -

Survey 1 tion

>

/

* " • • .

Shipping

0

Training

^
W

Ĥ
Acc

ount

/

Order
complete

r
. / / '̂

Figure 51: Showing customer's different content at different stages of the customer life cycle.

Optimal Site Path (OSP)

Ford Motor Company found that there were a number of alterative
optimal site paths to reach Ford's goal of visitors asking a dealer for a quote
on a vehicle. Ford is not selling cars online, but trying to increase the
number of people who ask for a formal price quote and make contact with
the dealership. The observation was that visitors who viewed the vehicle
pages, configured the options to their liking, and selected the audio system
and paint color of their choice, did not necessarily ask for a dealer quote.
The visitors who turned out to be the most likely to ask for a quote were
those who had also reviewed the financing options on the Ford site.

Once Ford had identified this as a critical step in the optimal site path,
they were able to encourage visitors to take this step. Financial calculation
tools, expanded financing options, and e-mail and Web-based reminders
were introduced in order to increase the number of visitors who traversed the
optimal site path [Cutler 2001].

Figure 51 shows how an Optimal Site Path (OS?) can expose where each
customer resides in the customer life cycle. The boxes in the figure represent
either specific pages a visitor must traverse in order to make a purchase or
represent subject areas where previous customers spent specific amounts of
time. It is not of primary importance whether a path requires 10 minutes or
10 weeks to traverse.

The OSP reveals the viewing habits of customers and makes it easier to
classify those who have not yet purchased. It is important information

154 Chapters

whether those who actually became customers typically looked at the
product specifications, the warranty, the success stories, the price and then
the licensing. It is likely that other prospects will follow the same path on
their way to becoming customers.

Optimal site path information suggests where a Web site should focus
promotional efforts. It allows measuring the power of promotional efforts.
The impact of changes made to a Web site can be measured. The speed by
which new customers are acquired and the effort it takes to keep them can be
derived as well.

Personalization Index (PI)

The spectrum of profile data collected from a visitor is virtually
unbound. Capturing familiar items such as name, address, phone and e-mail
contact, and payment information is typically included in a profile.

Collecting information is one aspect, using it is another. The
Personalization Index (PI) is a measure of how effectively customer data are
leveraged.

p, _ total number of profile elements in customer interaction

total number of pages in the section

Figure 52: Personalization Index (PI).

If PI is above 0.75, then customer information is efficiently used. It is
assumed that a significant number of customizable elements are used. If only
two data elements are collected, PI may score 1.00, but in this context it
means that only market segmentation is performed rather than
personalization. Prospects and customers are only grouped into broad
categories. While being simpler to maintain, broad categories are not as
powerful as true personalization data based on larger numbers (dozens) of
attributes.

When more and more data elements are collected, the better visitors can
be classified. At some point, broad segmentation moves towards
personalization, where customer strengthened and turned it into a loyal
relationship.

If PI is less than 0.30, then more information is collected than used. An
untapped reservoir of actionable data about customers is collected. This data,
however, is probably getting stale fast.

Freshness Factor

It has long been believed that a Web site must change constantly in order
to hold the interest of a given audience. While this is obvious for sites that

Managing Web Services from an E-Business Perspective 155

depend on users returning daily (news, weather, and sports sites as well as
portals like MSN), the constant creation of content is expensive and time
consuming.

The Freshness Factor measures the impact of dedicating resources to
continuous content publishing and renewal. The freshness factor is designed
to measure how often content is refreshed versus how frequently users visit
the site. This calculation should be performed against individual customer
segments since they will be interested in different site sections and will
respond to fresh content in different ways.

^ , r, , average content area refresh rate
Freshness factor = ^

average section visit frequency

Figure 53: Calculating the freshness factor.

Just as the value of individual data elements collected about a specific
customer is weighted, the value of content elements based on a number of
factors must be weighted as well. The most obvious value is timeliness
meaning that current information is delivered to a customer with small
latency. If this data element is imported from a stock price reporting service
or news feed from a wire service, some of the relevant questions are: How
long does it represent valid information? When does it expire? When should
a news article be moved over into the archive section?

If content consists of a series of rotating data elements, such as often
used for stock quotes, it is important to determine how recently has the data
element been shown to a specific user. Different articles carry different
weight based on their intended use, also determining their timeliness and
duration for which they represent current information. A white paper on
choosing the right vendor may have duration of years, while updates on
legislative issues are only interesting for one month, for example.

If the freshness factor is less than 1, then, on average, visitors or
customers are visiting that section of a site more frequently than its content
is updated. They are likely seeing stale content with the consequence of the
stickiness parameter decreasing. On the other hand, if the freshness factor is
greater than 1, then, again on average, customers see new content each time
they visit a site. Stickiness should improve. If the freshness factor reaches
above 1.5, then a site or a section of a site is having the risk of wasting
resources to create content that is not being viewed.

One should be careful with multi-modal distributions. If half of the
customers visit every hour and the other half visit once every 9 hours, then
average frequency is 5 hours. This reveals the general necessity of
segmenting customers and performing all calculations, including freshness
factor, on customer segments rather than global site populations.

156 Chapters

SUMMARY

In this chapter we discussed Web services business metrics as they can
be measured for traditional Web sites (in the business-to-consumer domain)
as well as becoming increasingly important for Web services (in the
business-to-business domain).

Historically, it has been seen how business culture at the beginning of the
20th Century shifted from the personal attention of the comer store to mass
production by assembly lines and vertical integration. The way to success
was to produce more goods, faster and cheaper. In the second half of the
20th Century, the focus shifted to distribution. Wal-Mart mastered
transportation and logistics of how mass-produced products could be
brought to market faster and cheaper.

At the beginning of the 21st Century, the information age is transforming
into the communication age with mining and utilizing the knowledge the
Internet and the Web provide for mediating business relationships and
delivering services. Knowledge about individual customers can be utilized as
it has never before been possible.

The value of knowing customers as individuals is enormous. The Web
provides the ability to capture, store and act on information about individual
customers as a competitive advantage. With personal information about
individual customers Web experience for each user can be customized,
buying pattern can be accurately predicted, products and services can be
customized meeting specific customers' needs, inventory costs can be
lowered, and customer relationships can be maintained at very low cost.

The result is the ability to bind customers into long-term relationships
through increased customer satisfaction and increased profits. If vendors are
agile and can readily meet new client requirements as they occur, the
motivation for those clients to find other vendors will be low.

The opportunity to analyze more than just customer information is rising
faster than ever. Today, customer profiles that cover such minimal data as
gender, zip code, number of visits and a few preference profile elements.
Tomorrow, focus will be more on the interaction rather than the information
delivered during the interaction. Customer profiles will include information
on how much customers know and how they like to communicate.

The store of information collected while doing business on the Web
should be carefully archived and protected, even if this data is not used
today. Raw data will allow for deeper and deeper analysis in the future. Even
though sites change quickly that six month-old behavior data may not have

Managing Web Services from an E-Business Perspective 157

the same relevance to the current site and infrastructure as current data.
Experience from traditional sales and retail tells those patterns reoccur.

Web sites are capturing more and more data every day, performing
deeper analytics and data mining and dynamically altering site content based
on this analysis. We have discussed some of the most fundamental data and
classified them into the metrics presented in this chapter. With the advent of
web services not much will change in terms of definition of business
metrics. It is the mode of collection of these metrics that will change. The
information collected has to be at the level of web service operations, the
conversations that these web services undertake with customers and the
correlations between these pieces of information.

With systematically collecting, structuring and analyzing the metrics that
have been presented, the opportunity exists to approach business in the Web
from an objective and systematic perspective in order to become and remain
a trusted member of the customer's value chain.

Chapter 6

MANAGING APPLICATIONS AND IT
INFRASTRUCTURE OF WEB SERVICES

1. INTRODUCTION

The intra-enterprise management aspects involve managing the
underlying network and system infrastructure and also managing the Web
service infrastructure and platforms. Web services cannot be adaptive to
changing workloads and planned/un-planned downtimes, without managing
the underlying network and system infrastructure. Along with managing the
network and system infrastructure it is important to manage the Web service
infrastructure as well.

1.1 Application View of Web Services

A Web service typically is implemented by various applications in a so-
called n-tier architecture. This architecture consists of an inbound connection
point, which typically also provides firewall filtering and load balancing
capabilities (shown as the load balancer in the figure). Behind the load
balancer, a farm of web servers serves basic HTTP requests for static content
(static HTML files and images). Web servers provide the horsepower to a
web site or a Web services site. They are the direct counterparts for users
behind browsers experiencing the service. Load balancer and web server
farm form the first tier in this architecture.

159

160 Chapter 6

Those requests coming from users that are relevant for the Web services
application, such as queries in catalogues or orders, are forwarded to the
application server tier, which forms the second tier in this architecture.
Application logic drives the dialog with users or other Web services.

Il^i|||ii|i|||

load
[balancer

<
web 1

< weo 1

<
„,̂ u 1
weo r— web

server

app
server

backend
database

Figure 54: Application view to a Web service: n-tier architecture of a Web service.

The third tier then is comprised of the database backend, which stores all
relevant data about service data, catalogues, and users.

access tier

authentication. DNS
intrusion detect, VPN

web cache

web tier

Figure 55: A typical infrastructure view to a Web service.

Managing Applications and IT Infrastructure of Web Services 161

Monitoring such a system can be done from an infrastructure perspective
as "black-box" monitoring by observing the behavior (response times,
failure rates, etc.) from outside. Alternatively, components in tiers can also
be instrumented and monitored and observed separately. Means to
instrument and measure application components are discussed later in this
section.

The application view of a Web service is complemented by a so-called
infrastructure view with machines, networks, and devices on which the Web
services applications reside (servers) or which they use (networks, devices).

The next section discusses the infrastructure view to a Web services
system that is comprised of firewall and load balancing devices and servers
that are connected through subnets.

1.2 Infrastructure View to Web Services

The following figure shows the infrastructure for Web services. The
structure contains three subnets that connect the inbound load-balancing
device (named lb in the Figure 55) to an outbound Internet connection. From
the load-balancing device, a second subnet connects to the farm of servers
operating the web servers.

Static content is directly served from web servers from storage attached
to web servers. Separate servers are needed to host application servers and
database backend. Those machines are connected to web servers through
another subnet.

The reason why multiple subnets are used in the infrastructure is
primarily to decouple and isolate components (for reasons of failure isolation
and security protection).

Traditionally, tiered architectures have been deployed in data centers
manually by selecting and configuring machines and devices (disks,
switches, routers). Recently, data center solutions that automate those tasks
to a large extent, have appeared. Based in descriptions similar as shown in
Figure 55, these data center infrastructure solutions automatically assign
resources and configure them properly such that applications sych as Web
services can be deployed on them.

Examples of such data center solutions are HP's Utility Data Center
(UDC), IBM's Blade Center, Sun's Nl (Nl), or Microsoft's Dynamic
Systems Initiative (DSI).

162 Chapters

2. LINKING IT INFRASTRUCTURE
MANAGEMENT WITH WEB SERVICES

The following figure shows three levels of management tasks from the
point of view of the IT layer.

Business Impact Management

Align IT management with business objective
- Assure customer service levels

Improve cost efficiency through IT planning
Turn data into business information

Event Correlation and Automation

Understand cross domain dependencies
- Improve availability with fast problem resolution!

Elimination of potential point of failure

Infrastructure and Application Management

Identify, notify and cure problems at the source
- Auto-discovery of critical resources
- Automated problem resolution

Response time analysis

Figure 56: Three levels of IT management.

At the lowest level, basic monitoring techniques are applied. At this
layer, applications monitor hardware and software, and provide automated
corrective actions when possible. With an infrastructure architecture based
on monitoring models, monitoring provides a solid foundation for the
development of management solutions addressing the complex needs of
Web services IT infrastructures.

The next level is event correlation and automation. As problems occur
that cannot be resolved at the monitoring level, event notifications are
generated and sent to a correlation engine. The correlation engine at this
point can analyze problem notifications (events) coming from multiple
components, and either automate corrective actions, or provide the necessary
information to operators who can initiate corrective actions.

The third level in this structure is called Business Impact Management. It
gathers management information from various part of the enterprise, and
provides an insight into how a component failure may affect the business as
a whole. For example, when a router failure occurs, it is important to

Managing Applications and IT Infrastructure of Web Services 163

understand what line of business applications will be affected and how to
reduce the impact of that failure on the business.

Monitoring for Web services Infrastructure involves three major areas:

- Availability management. Based on monitoring in the Web
services infrastructure guided by monitoring models, or groups
of monitoring models, the status of Web service components is
constantly checked including the Web servers, the application
servers and database backend. The status can be either active
(operational) or inactive (non-operational). Monitoring models
can be customized adapting monitoring models to requirements.

Performance management. The modules' monitoring models
enable to measure and report the performance of virtual hosts run
by Web server resources in order to identify bottlenecks and
potential problems in the Web services infrastructure. For
application server some of the key performance metrics are:

Enterprise JavaBean (EJB) performance,

- database connection pool performance,

- JVM runtime performance, and

- Servlets/JSP performance.

- Operations management. Monitoring a Web services
infrastructure enables managing Web server and application
server resources on a scheduled basis. One can start, stop, and
restart these servers, check for the status of these servers, and
retrieve and analyze trace log files

Monitoring a Web services infrastructure is often based on events and
rules about how those events are triggered. Events are issued for those
situations than need to be propagated to an operator console.

MANAGING THE APPLICATION
INFRASTRUCTURE OF WEB SERVICES

3.1 Metric Collection and Analysis in Application
Infrastructure of Web Services

A strong Web services business metrics capability is a core component in
building the right e-business and CRM architecture. Web analysis is a first

164 Chapter 6

order task in the operational infrastructure needed to build and maintain
online business.

Supportive tools extract, analyze, store, and correlate base information of
user behavior (clicks) with other online and offline information. The
resulting Web services business metrics is leveraged to measure and improve
the financial business performance. Business decision makers have
immediate insight into dynamic and interactive reporting and data mining.
They can export Web services business metrics to their warehouses and
CRM applications.

The six most difficult technical challenges are:
1. deep, complete analysis of online data,
2. easy access to Web services business metrics,

3. flexible interoperability with e-commerce and CRM systems,
4. ready integration with the corporate data warehouse,
5. high performance and scalability, and
6. an open and customizable enterprise-strength solution.

It is essential to invest in a data warehouse solution in order to unify and
act on customer information. A flexible Web services business metrics
coupled with strong analytic software tools is vital for managing business
aspects of Web services. Delivering its value, a Web services business
metrics approach works with and enhances the ROI of other investments in
the corporate IT infrastructure.

One problem of drawing the link from high-level business metrics to
technically measurable data is the gap between information present in
measured data at different levels.

ras-57.xyznetwork.com - fa5608 [01/Aug/2000:15:14:39 -0000] GET /quotes/ stock_quote.cfm?

symbol=ORCL HTTP/1.0 200 29413 - Mozilla/3.01 C-KIT (Win95; U) 403 403-3 2898

pas-ca8-17.ix.klmnetcom.com -fa5318 [01/Aug/2000:12:11:58 -0000] GET /content/

0,609,28,0.html HTTP/1.0 200 20858 - Mozilla/4.02 [en]C-DIAL (Win95; U) 186 186-3 446

user-38lcbb6.dialup.mindspring. com - ev6400 [01 /Aug/2000:08:15:56 -0000] GET /

specials/allaire-ipo.html HTTP/1.0 200 27432 - Mozilla/2.0 (compatible; MSIE 3.01; Windows 95)

739739-4141

ind-0002-7.triquest.net - fb8701 [01/Aug/2000:01:17:34 -0000] GET / HTTP/1.0 200 0 - Mozilla/4.0

(compatible; MSIE 4.0; MSIECrawler; Windows NT) 193 193-3 100

Figure 57: Raw data collected from HTTP request traces from Web logs.

Managing Applications and IT Infrastructure of Web Services 165

The sample data shown in Figure 57 below is a simphfied example of
raw page view data from a Web log. While offline application data is quite
structured, online data is fairly unstructured. Online data is largely not easily
interpretable without detailed knowledge of the chosen platform, the site
design, the architecture, and policies, augmented by the information stored
in other logs and associated databases.

Data elements must be extracted from the raw data representing Web
activity in a Web log. These data elements include cookies, session
information, IP addresses, domain and sub-domain names, time stamps,
request types, resource types, dynamic content, user query strings, protocols,
status codes, bytes transferred, information about user agents and referrers.
Analyzing this data requires a detailed knowledge of the Web site and its
internal design. It is also highly dependent on underlying systems and prone
to fail when technology used for the Web site changes.

The raw data provide the input for a complex, rule-based process to link
requests to visits, and visits to users, and to interpret what is really going on
across multiple sites driven from a business perspective with the final goal
making right business decisions.

For both anonymous and identified interactions, Web service
management systems collect detailed customer behavior data. By recording
every click at every moment, the system collects the data points generated
by a visit to a Web site available to those who can use them. As a result,
Web services systems are able to paint a richly detailed portrait of
customers, and can determine how to get more of customers to return, or
visitors to be transformed into customers.

The following section discusses an example of Web services metric
analysis architecture and the technical aspects associated with it.

3.2 Web Services Metric Analysis

A typical Web services Metric Analyzer contains a high-performance
relational database such as Oracle, Microsoft SQL Server, or IBM DB2. It
must have high-performance since it will deal with high data volumes for
both importing and reporting. The schema of the database is carefully
organized as a constellation schema, whose major tables cover the three
relevant levels of hits (requests), visits, and users. Page views for any given
visit are linked together in order, making it possible to analyze complete
sequences of user clicks.

Dimension tables include resources, browsers/platforms, sub-
domain/organization, time, referring sites, query string elements (both those

166 Chapter 6

from actual user searches and those used to describe dynamically served
content), and many other online data elements. Aggregate tables are used to
hold pre-computed totals, averages, and other summary information used to
greatly speed up queries and interactively drill down information. In addition
to reducing response time, aggregates enable effective data management
since they can be retained for reporting after the underlying data is deleted.

Typically, a Web services Metric Analyzer can be extended and
customized to accommodate additional data from online and offline sources
and to adapt to customer requirements.

The major task of the Web service Metric Analyzer is to extract
meaningful data from raw technical data. It constructs a comprehensive view
of user activity in near real-time. Recognizing the heterogeneous and
complex nature of today's Web environments, it is data-source agnostic. It
supports data collection through Web server log files, network packet
sniffers, and Web server plug-ins and other instrumentation techniques (Pg
187). The choice of Web Data Collector depends on the data that are
interested in a given environment for analyzing behavior and the topology of
a Web site. While behavioral data traditionally originates from Web server
logs, other data sources can be used in conjunction with or instead of log
files.

Web data volumes are vast. Large corporate sites attract tens to hundreds
of millions of hits per day, and major portals surpass a billion hits per day.
Compared to the data processed in traditional customer data warehouses,
Web data represents many more interactions, consists of lower level
behavioral observations (not just transactions and promotions), changes
much more frequently, requires a higher degree of responsiveness, and
combines actions from both customers and a larger pool of visitors. Large
data volumes are the main reason why scalability is a major issue for
effective Web services metric analysis.

Scalability is a multifaceted goal, comprising both Web services Metric
Analyzer update and access through Web services Metric Reporting.
Supporting systems have to be designed and implemented with high
scalability and performance as primary requirements.

Web services metric analysis is unlike the traditional data warehouse
problems. Standard warehousing approaches have been developed to load a
huge amount of highly structured data into a database in larger periods such
as once every month. In contrast, Web services metric analysis is refreshed
with up to tens of gigabytes of relatively unstructured new data every day.

Monitoring models provide a systematic foundation for monitoring and
archiving data that characterize the behavior and the boundaries of "normal"

Managing Applications and IT Infrastructure of Web Services 167

behavior for a Web service. Monitoring, or more general, management
models are also the precursory for tool support and implementing an
effective management solution for a Web service.

Business processes are becoming more integrated within the enterprise.
IT investments are evaluated by their impact on business value, that is, the
profitability of the enterprise, gains in market share, and gains in customer
satisfaction. Today's enterprise is far more dependent on the availability of
IT service to conduct business. Business managers expect to buy IT services
on an as-needed basis. Understanding how business units, partners and
customers access and use IT services is critical to managing costs and
optimizing their return on IT investments. Business-aware management
systems provide a window into how resources such as storage, servers and
bandwidth are consumed and which business functions depend on them.

3.3 Rule-based Processing

Sophisticated rules drive Web service metric analysis. It is specifically
challenging to effectively process the large volumes and vast quantities of
data. Rules fall into different categories:

- where to locate data,

- when to look for it,

- what data to exclude,

- how to recognize users,

- how to define visits,

- what data aggregations to compute,

- how to classify users,

- how to identify user segments, geographically or based on other
criteria.

These rules are configurable per site and responsive to the demands of
business. Rules represent the knowledge about business aspects into an
effective software solution.

For example, all high-traffic sites have DNS resolution turned off in
order to improve Web server performance. DNS resolution turns IP
addresses into hostnames and meaningful business information (e.g.,
international traffic vs. domestic, home users vs. corporate users).
Configurable caching within the DNS resolution engine speeds up lookups.
To help business users to learn more about the names and the geographies
than the hostnames can provide, the Web service metric Analysis can
incorporate a database that maps sub-domain names into corporate and

168 Chapter 6

geographic information. This allows to understand the identities of users and
to segment their users by geographic location.

As another important example, user recognition may be based on
authenticated user IDs, based on cookies, on hostnames plus browser
information, or on specified combinations of these techniques. The
combination of techniques may also be specified through rules. An advanced
capability is to reconcile visit and hit counts across different user
identification methods. Even if the identification method changes during a
visit, the change can be tracked.

Protecting privacy is an issue that counters the efforts to collect and
gather as much information as possible about users and their activity on a
Web site. Users who wish to remain anonymous must be honored and
filtered out from the collected data.

3.3.1 Handling Multiple Sites

Larger Web sites are distributed across different geographic locations.
They want to do analysis across networks of logical sites or acquired sites. In
the publishing industry, for instance, acquired sites are called properties,
which is the term used for magazines and other distinct brands. At the
database schema level, notions of property and property group must be
associated with each page hit. Database-level resource grouping enables
analysis by the individual property yet still consider the entire collection as a
single entity (meaning that a visit can span properties). Similarly to property-
level reporting, analysis can be done across constituent servers or server
clusters at different sites.

3.3.2 Web Service Metric Reporting

Web services Metric Reporting can be implemented within a thin-client Web
interface and, for instance, installed as Application Server Pages (ASP) on
an Internet Information Server (IIS) on NT. The thin client calls the so-
called OLAP (On-Line Analytical Processing) [Rohm 2003] interface that in
turn reads and writes metadata information and fetches report data from the
Web services metric analysis.

Web services Metric Reporting can offer analytic flexibility based on
multidimensional data analysis and data visualization. Operators can log in
to see reports on Web services metrics, extend them, and create customized
reports. They can segment users, content, or any other dimension.

Managing Applications and IT Infrastructure of Web Services 169

Web service Metric Reporting typically offers visually oriented
capabilities to drill, sort, cross-tab, pivot, bin, graph (2D or 3D) and page
through report data. Drilling takes the user down into details (e.g., from
months to days), up to an aggregated view (e.g., from a geographic state to
the whole country), or across (e.g., from visit durations to referring site for a
given day). With a cross-tab view, an operator can group data by multiple
dimensions (e.g., frequency of visit by user segment). Pivoting allows
rearranging the orientation of dimensions on the screen (e.g., flipping rows
to columns, or changing the nesting of row dimensions). Binning lets
organize data into groups based on value ranges (e.g., visit counts can be
divided into ten bins based on the number of pages viewed). Complex
formulas, filter data, and define custom groups (or user-defined segments)
can be computed based on filtering multiple dimensions.

Reports are typically organized in hierarchical views of folders
corresponding to the customer life cycle. Reports can include various
metrics. Multiple reports are combinable in HTML in order to be viewable
in Web browsers. HTML documents can be customized for report
generation.

Often, asynchronous reporting, and cross-user report caching is
supported in order to speed up subsequent requests for a report. It is also
often possible to directly view the underlying database SQL for a report and
to export reports in known formats such as Excel, Lotus, HTML, or plain
text.

Web services metric analysis includes interrelated reports, attributes,
attribute hierarchies, filters, metrics, custom groups, and documents.
Operators and operator groups can be given privileges ranging from narrow
to broad. For example, some operators may be restricted to just viewing
reports; others may have the ability to view and create new reports.

3.4 Basic Monitoring Functions in Web Services
Applications

The basic premise of monitoring an application is to ensure that states of
a monitored application component are in a "healthy" state. Whenever the
state of the component is not healthy, such as exceeding a monitoring
threshold, an early warning signal is sent to the operator for action. The
action and resolution of the problem depends on the operator. Typically,
events and monitoring data from various sources need to be combined and
further analyzed in order to resolve the problem.

As an example is shown how a basic monitoring profile can be created
that monitors the general health of the Application server instances. When

170 Chapter 6

specific problems occur, additional monitoring is temporarily deployed to
further pin-point the problem by gathering and analyzing this additional
information. When the problem is resolved, the additional monitoring
instrumentation is removed from the system.

The following table shows a monitoring profile for all the Application
server instances. This profile contains a description of the steady state
threshold during normal operation. Steady state is generally achieved after
running the monitor for a while, and deciding about the most reasonable
thresholds. The goal is to determine thresholds that will detect an anomaly
while masking the normal fluctuation, and not create false alarms. It is
advisable to start in an environment with a test system rather than the actual
Web service in order to verify functioning of the monitoring system and in
order to obtain a first-level approximation of thresholds.

Application
component

application
server status

DB pools

EJB

HTTP
sessions

JVM runtime

thread Pool

transaction

Web
application

Indication

application server
down

connection pool
timeout

DB pool average
wait time

percent connection
used

EJB performance

EJB exception

live sessions too high

used JVM memory

active thread load

transaction response
time

transaction time out

Servlet/JSP errors

Servlet/JSP
performance

Threshold

-

0

300 ms

80%

1200 ms

30%

2000

80%

80%

1000ms

3%

0

800ms

Cycles
(sees)

60

90

90

180

60

180

180

90

Occurrence /
Hole

1/0

9/1

9/1

9/1

9/1

9/1

9/1

1/0

9/1

9/1

9/1

9/1

9/1

Figure 58: Example of a monitoring profile for an application server.

Managing Applications and IT Infrastructure of Web Services 171

The profile shows almost all typical parameters that are used for
monitoring an application server. This configuration is also called the
monitoring model for the application component/The monitoring model also
shows the data that are archived on a disk.

Another advantage of application-level monitoring is the ability to
interact with other available monitoring tools via SNMP and other
monitoring tools. When the monitoring architecture is not event-based, it can
communicate with other monitoring tools via an event emulation layer that
acts as a proxy between the monitoring system and other monitoring tools.
The main function of an event emulation layer is to mimic the event
producer interaction by requesting and collecting the monitoring information
from the external tools, and providing it in event-based format to the
monitoring architecture.

4. LINKING INFRASTRUTCURE MANAGEMENT
TO WEB SERVICE MANAGEMENT

Over time, network and system components have proliferated and have
been deployed across wide networks in enterprises. As the complexity of
infrastructures increases, so increased the need for management software to
handle this complexity, anticipate problems and resolve them before they
impact the business.

Managing the components in an IT infrastructure begins with well-
managed devices. Servers, disk and tape drives, workstations, printers - all
have management software specifically designed to optimize their
availability and performance. Management software provides
comprehensive configuration capabilities and detailed system information
necessary to keep the hardware up and running and reduce the total cost of
ownership by automating or simplifying manual configuration processes.

The main areas of infrastructure management are:

• Network management,

• Systems management,

• Storage management, and

• Application management.

Gaining control over IT infrastructure also requires the ability to monitor
and manage larger compounds of networks, servers, storage racks, and
applications such as databases and other. Management tools are provided by
vendors and deliver system-level deployment, configuration and monitoring
capabilities. Additionally, management systems such as HP OpenView assist

172 Chapter 6

management of an entire infrastructure comprised of a multitude of
components by providing visibility into those infrastructure components,
along with fauh management, performance management, application
management and operations management. Through integration with system-
specific infrastructure management, they provide on-demand information
about the status of each component and present this information to operator
consoles in form of consolidated views.

4.1.1 Network Management

Network infrastructures have become more complex than ever. Whether
switched IP networks, or providing new services over a converged voice and
data network, the need to manage the availability and performance of the
network as well as the dependability of IT systems and business have never
been greater. Network management systems offer enterprises and service
providers the ability to manage voice and data networks through a modular
set of products and services that can be tailored to specific needs.

Network management systems are able to:

• Discover the relationships of network devices to each other and
map out a topology of the network. Since networks are
constantly changing, automated discovery and generation of
topology maps are essential functions for a consistent view into
an ever-changing network topology.

• Address scales of enterprise networks comprised of hundreds of
thousands of components connected through the network.

• Monitor networks for availability. This is achieved through using
a combination of industry standards and proprietary methods that
are supported by underlying network switches and routers and
aggregating and presenting this information in ways that are
understandable by administrators.

• Measure the performance of networks and provide detailed
insight and analysis regarding network utilization and potential
hotspots in a network.

• Integration with management tools from different vendors allows
administration from a central location and with a unified view.

Some network management products, such as OpenView's Network
Node Manager (OV NNM), have become de facto standards in the industry
because of their capabilities, reliability and install base. Those systems
follow open architectures that allow customers to integrate and operate
hundreds of components.

Managing Applications and IT Infrastructure of Web Services 173

Key functions of network management systems are:

• Automated network discovery and topology layout.

• Fault management.

• Performance management.

• Predictive management - isolate current and future bottlenecks.

• Problem diagnosis - measure performance and availability of
specific network paths.

Characteristics of typical network management solutions (e.g. HP
Open View Network Node Manager product) are:

- Manage layer 2 switched networks and IP multicast networks.

Support for IP, ATM, and telecommunications infrastructures.

Problem detection with statistics, alarms, and maps on a display.

- Reduced problem resolution time in complex networks with
accurate views and automated problem analysis.

- Enabling viewing the topology of a multi-cast environment and
its status.

- Performance insight for networks by application monitors and
reports on network protocols and devices.

- Problem diagnosis by providing status and performance
information on static and dynamic network paths.

4.1.2 Systems Management

Systems management solutions provide a comprehensive collection of
systems management functions that enable to simplify an environment and
deliver better service. At the system level, tools are needed to manage
components in an environment. System-level management tools provide
configuration capabilities and detailed system information that are needed to
manage servers, storage devices, clients and printers.

Environments are typically heterogeneous with servers, storage, devices
and printers from a variety of vendors. A management solution is needed
that monitors, controls and reports the health of the entire environment with
all its heterogeneity in order to diagnose and resolve problems, as well as
optimize performance and utilization. Multi-platform systems management
solutions meet those needs.

Some typical characteristics of system management systems are:

- Multi-platform support by supporting management agents for a
variety of operating systems.

174 Chapter 6

- In-depth operating systems management support through plug-
ins providing the linkage to applications.

- Management agent hierarchies characterized by:

- The purpose of reducing data and traffic in case of event
storms by solving problems locally,

- Configurability through scripting and lightweight
programming support, and

Improved process control and server-agent communication
to reduce administration overhead and simplified use.

4.1.3 Storage Management

The speed of performing business on demand requires agility based on
availability and access to large amounts of information, at the right time,
presented in the right way to the right decision makers. An automated,
managed storage network enables this.

Automation gives data and storage administrators the key to exercising
control while optimizing utilization and cost.

Key capabilities of automated storage management systems are:

• Enterprise-wide storage capacity management for high
availability and proactive planning.

• Interoperability in multi-vendor storage networks, for
maximizing performance and return of investment.

• Integrated storage services management for resource allocation
and reliability.

• Recovery in case of failure or data loss including instant
recovery, system recovery or site disaster recovery.

• Defined provisioning policies and processes for storage
capacities.

• Tool support for capacity planning.

Giving storage administrators these kinds of capabilities is the motivation
behind storage management products. They offer stability within a business
environment that can be volatile and unpredictable.

Characteristics of storage management solutions are:

increased data availability by:

- backup, recovery, and instant recovery from volume
copies.

Managing Applications and IT Infrastructure of Web Services 17 5

local and remote data replication.

increased management efficiency by:

centralized storage management,

asset inventory,

array configuration, asset inventory and problem
identification.

simplified management of storage network resources by:

automated management of network storage resources (tape
and disk, direct- and network-attached storage, storage area
networks (SAN) and heterogeneous storage devices),

uniform management console and a common reporting
structure.

improved performance management by:

optimized array resource allocation.

Current examples of storage management products are (chosen from the
HP OpenView suite):

- Continuous Access Storage Appliance — a storage application
platform, enabled by virtualization technology, that delivers local
and remote data mirroring, data snapshots and migration across
heterogeneous storage devices.

Device Plug-ins - extends capabilities of the Storage Area
Manager through integration with the rest of the IT environment.

Storage Area Manager - seamlessly integrated software suite for
managing and monitoring multi-vendor, direct-attached and
networked storage environments.

- Storage data protector - combines both disk- and tape-based data
protection across multiple storage architectures, applications, and
operating environments to deliver various levels of recovery.

Storage Media Operations - automates tracking/management of
hundreds of thousands of removable storage media.

- Storage Provisioner - capacity management and utilization tool
that resolves unpredictable storage demands in complex IT
environments.

4.1.4 Application Management

According to recently published industry analyst reports, applications,
more than any other components of an infrastructure, are responsible for

176 Chapter 6

downtime in critical business systems. As a result, managing the availability
and performance of critical business applications has become more
important than ever.

Application management systems must provide insight into the structure,
availability, and performance of applications. This insight is typically
obtained through so-called management plug-ins, instrumentations that are
induced into an application environment for observation and actuation of
operations received from associated management agents. Each plug-in has
application-specific intelligence, understanding the expected behavior and
structure of a particular application, and notifying the appropriate
management agent when application processes, log files, and other
mechanisms indicate a problem with performance or availability.

Application management systems offer application management for
nearly every major business application. Additionally, they can be extended
to any off-the-shelf application, as well as own applications developed
within an enterprise. By integrating application management into
management consoles, application administrators can understand the
availability of applications, understand related problems in the infrastructure
which may impact applications, and assess the impact of application
downtime on an overall IT service. Application management systems have
become critical pieces of enterprise IT management implementations.

Characteristics of application management systems are:
Manage performance and availability of a range of applications.

- Automatically instrument agents to manage key attributes of an
application.

- Automatic service discovery to improve time to achieve full
service management.

- Templates can be built to manage a large variety of applications.
- New Web services management engines allow to:

capture Web services transactions,
- actively manage Web services interactions over WSDL

and SOAP,

- enable provisioning, user profile registration, real-time
SLA enforcement, access control, subscription,
management, and accounting,

identify performance bottlenecks such as provided by
transaction analyzing tools.

Managing Applications and IT Infrastructure of Web Services 177

Performance management by monitoring agents allows a uniform
interface for monitoring, analyzing, and forecasting resource
utilization assigned to applications.

5. NEW DEVELOPMENTS IN IT -
INFRASTRUCTURE MANAGEMENT FROM
THE WEB SERVICE PERSPECTIVE

Enterprise IT organizations continue to adopt the idea of IT service
management. Industry standards are enabling more component-based
application development and deployment. Application platforms or servers
such as BEA Web Logic (BEA WebLogic Platform), IBM WebSphere
[Sadtler 2004], or Microsoft Transaction Server (MTS) have become the
foundation for Web services-based applications.

Measuring transactions and messages exchanged between Web services-
based applications is becoming central for application and services
management.

Two main approaches to managing services are discussed:

• IT as a service provider.

• Virtualization as Enabler for Turning Resource into Services.

Enabled by Global Grid Forum (GGF) initiative named Open Grid
Services Architecture (OGSA) [Foster, 2002], resources maintained in IT
infrastructures are more and more turned into services unifying resources
and applications under the same notion of services. The hard line between
resources and applications is fading, and the new notion of services is
emerging. Consequently, IT management with its facets of network,
systems, storage and application management turns into service
management, and IT providers turn into service providers.

Virtualization is the technology that enables turning resources into
"programmable" services. Virtualization dissolves the hard ties between
applications to the machines onto which they are installed and operating.
Virtualization introduces a control point between physical resource devices
and corresponding virtualized abstractions largely hiding the aspect of
heterogeneity.

The virtualization control point can be used for a multitude of benefits:

improved utilization by sharing underlying physical resources,

protection and isolation of application domains in resources, and

178 Chapter 6

- temporary suspension of applications from resources without de­
installing them or reconfiguring them at reactivation time.

The technology shift caused by virtualization finally enables what is
called service management in the following sections.

5.1.1 IT as a Service Provider

Seeing IT as a service provider means, for instance, that IT is planning
services that meet required availability, performance and security
requirements and which conform to agreed-upon service levels and costs. IT
is managing Service Level Agreements (SLA) for both internal and external
customers to deliver IT services and manage service delivery at agreed upon
quality and cost targets. When a service is disrupted, or performance
degrades, IT must not only know which devices are involved, but which
services are impacted and which actions will provide the greatest positive
impact on the business of its customers. By measuring the results, IT can
make its own determination based on empirical knowledge of what actions
are appropriate from the business perspective.

Enterprise IT departments as traditional cost centers turn into
organizations that can create value and are driven by internal or external
customers. Value creation results from making the right decisions based on
the knowledge from the business level down to the physical devices level.

It is not enough just to know when something is not working such as
knowing when the performance of a service is degrading or not meeting
service level objectives. Service management systems must proactively track
performance, monitor performance against alarm thresholds and maintain
performance data, not only for later analysis, but also for justification and
proof of whether or not SLA have been met. Reputation and revenue of an
IT services provider depends on proof and evidence that it can meet SLA.

With service management systems, actions can be prioritized by business
impact. For example, one can prioritize alarms and events related to a Web
server of a customer's online ordering system over a problem in an internal
email system. Those priorities must be specified in form of policies and are
obeyed by the service management system. Depending on the type of alert,
the service management system advises operators to initiate action, or it
automatically interacts with the resource virtualization environment to
provision resources on the fly that would resolve a problem.

Managing Applications and IT Infrastructure of Web Services 179

5.1.2 Virtualization as Enabler

By consolidating IT infrastructure while ensuring business continuity,
integrating enterprise applications and data, and managing the network
effectively, IT service departments move toward a model in which
computing services can be delivered on an as-needed or on-demand basis. IT
infrastructure automatically and adaptively matches resource capacity to
service demands in real time.

IT infrastructure must match resource capacity to service demands in real
time. Virtualization technologies, built-in across the entire infrastructure and
data centers, create a compound effect - infrastructure is utilized where and
when needed, and reallocated on-demand when business and IT conditions
change. By its nature, virtualization reduces inflexibility in the infrastructure
so that business processes, applications and services, and the underlying
infrastructure can more quickly and easily shift as needed. Virtualization
technologies enable infrastructure flexibility by allowing the pooling of IT
resources as a single logical entity whose services can be delivered in a
consistent manner anywhere, and managed in a consistent manner from
anywhere. Virtualization enables more cost-effective and rapid scalability as
well as greater deployment flexibility. Virtualization can be extended over
time staring with single virtualized resources towards sophisticated
virtualization across multiple systems and ultimately across data centers.

Virtualization techniques, built-in over time across the entire IT
infrastructure and data center assets, create enable that effect.

Virtualization occurs at two levels:

• Services are virtualizing applications from a customers point of
view, customers (or clients) interact with a clean service
interface rather than with individual applications, and

• Turning resources into (resource) services decouples serving
application's resource needs from underlying physical resource
infrastructure.

When an application fails, a corrective action could be to direct client
requests at the Service Access Point (SAP) to another application hiding that
internal disruption from clients using that service.

Similarly, when physical devices fail, the resource virtualization layer
can seamlessly fail-over to other physical resource serving the needs of the
application, without noticed by the application. Disk RAID systems are an
early example. Servers and networks are now becoming subject to resource
virtualization as well.

180 Chapter 6

Both virtualization layers are the essential technical core for service
enabling and enabling services management.

With virtualization, infrastructure can be utilized where and when
needed, and reallocated on-demand when business and IT conditions change.
By its nature, virtualization reduces inflexibility in the infrastructure so that
business processes, applications and services, and the underlying
infrastructure can migrate more quickly and easily as needed.

Virtualization techniques enable infrastructure flexibility by allowing the
pooling of IT resources as one single logical entity whose services can be
delivered to any application.

Advantage of virtualization is achieved today by systems and solutions
that incorporate these techniques. These systems will create the foundation
that will expand over time with more sophisticated virtualization across
multiple systems and uhimately across data centers.

Various resource virtualization techniques exist:

• Virtual server environments intelligently scale servers for
horizontally and vertically scaled applications such as web- or
applications servers up and down based on service level needs and
workload conditions. This is achieved by continuously monitoring
application service levels and adjusting resource allocations as
required. Virtual server environments combine the power of server
clustering, capacity on demand, server partitioning, and rapid
deployment with an intelligent policy-based server provisioning
engine.

• Virtual networks divide the available network bandwidth into
multiple independent and secure channels that can be dynamically
and transparently assigned to specific applications without requiring
changes to the physical connections paths between network switches.

• Virtual storage provides an abstraction layer between physical
storage devices and the logical volumes used by applications. Storage
virtualization solutions are encompassed in scalable, RAID-based
storage architectures. Several levels of storage virtualization are
typically offered: server-, array-, and network-attached storage
virtualization.

• Data center virtualization combines server, network and storage
virtualization for an entire data center. For data center
virtualization, HP's Utility Data Center (UDC) is an example. It
can provision infrastructure for new applications and services on
the fly.

Managing Applications and IT Infrastructure of Web Services 181

6. NEW CHALLENGES DRIVING
INFRASTRUCTURE MANAGEMENT

In the 1980s and 1990s, IT infrastructures were built largely by taking a
silo-based approach. Business processes were delivered through custom
applications and made available through disparate sets of computers, storage
and software. And as those silos have become more complex, larger and
larger IT staffs are required to maintain and evolve these systems. While this
vertical approach to building IT infrastructures has been the case in the past,
it is becoming increasingly clear that it grows harder and harder to gain a
return on the investment it requires to architect, build and maintain these silo
systems and solutions.

In fact, according to industry analyst META Group, 70% of today's
average IT budget goes into maintaining silo-based infrastructures, leaving
only 30% for innovation. META Group forecasts that by 2006, as much as
80% of the IT budget will be consumed by maintenance if enterprise
management continues unchanged. And by 2010, if companies stay with a
silo-based architecture for IT, more than 95% of the IT budget will be
consumed by infrastructure and maintenance expenses, leaving very little
funds for innovation.

As systems become larger and more complex, infrastructure must evolve
from silos of technology to virtualized resource pools that are automatically
or semi-automatically managed. Rather than focusing on supporting discrete
applications, used by specific business functions or groups, the infrastructure
must be organized to support the needs of multiple groups and business
needs across the enterprise, subsequently reducing the effort associated with
administrating specific business processes and infrastructures. As the
infrastructure becomes more adaptive, the enterprise becomes more
responsive to change, or adaptive.

The deeper integration of IT with business processes has led to a
fundamental change in how organizations view IT infrastructure and the
services it provides to business units. IT is used to link separate business
processes together within an organization and to link suppliers, partners, and
customers together outside the corporate firewall. These many linkages have
rapidly led to more complex IT solutions, which impact how companies use
and view their IT resources.

The following business challenges are fundamental drivers for how the
IT infrastructure landscape is changing providing ground for innovation such
as an Adaptive Enterprise (HP Adaptive Enterprise):

Increasingly complex IT solutions. The integration of business processes
and IT solutions reaches not only one organization, but reaches also into

182 Chapter 6

customer, supplier, and partner environments creating complex and
interdependent relationships. Enterprise resource planning, supply chain
management, customer relationship management, wireless services, and
other technologies have created a very expensive legacy IT infrastructure.
Managing change keeping IT aligned with business objectives has become
increasingly difficult. These infrastructures must be broken up making them
more adaptive in a step-wise evolutionary process.

Variable, highly unpredictable workloads. As suppliers, partners, and
customers are exposed to a potentially unbound number of users connected
through the Internet and the Web, workloads for applications and backend
databases are becoming more unpredictable. With a static datacenter
infrastructure, each individual resource or application needs to be over
provisioned to meet potential demand. As more resources are exposed to the
variability of the Internet and the Web and users outside the organization's
firewall, scaling enterprise resources is considerably contributing to the
rising cost of managing IT.

Growth in the number and variety of systems to deploy and manage. To
meet the increasing demands of both business units within the organization
and partners outside the company, deploying hundreds, if not thousands, of
horizontally scaled servers has become the dominant way to keep pace with
the demand for IT resources. Manual deployment and management tasks, as
well as the integration challenges of making such a dispersed and varied IT
architecture work, create another challenge to organizations' IT operations.

Tremendous cost of downtime. As the management of business processes
becomes dependent on the IT resources, and suppliers and customers
become dependent on an organization's IT to conduct business, the cost of
downtime rises substantially. In some industries, such as financial services,
the dependency between IT resources and downtime has been a widely
researched and discussed issue. Always available services is becoming a
critical necessity.

High cost of managing IT assets. To manage the complexity, security,
and variability of IT systems while providing a high level of availability of
IT resources, organizations are spending more on IT operations. As a result,
organizations are continuing to turn to external service providers to
outsource their infrastructure management. In fact, IT outsourcing is the
largest category in the IT services market, with expected growth in the
future. However, outsourcing such operations only addresses part of the
challenge. The organization must still improve the linkage between IT and
business objectives, in the outsourced case also in cooperation with the IT
service provider.

Managing Applications and IT Infrastructure of Web Services 183

Current trends turn into visions of large Enterprise Management solution
and service providers such as Hewlett-Packard with its vision of the
Adaptive Enterprise (HP Adaptive Enterprise) or IBM with its vision of
Autonomic Computing (IBM Autonomic Computing).

7. SUMMARY

This chapter introduced the basic notions of application and
infrastructure management for Web services.

Metrics have been presented that can be used for build monitoring
models for applications or infrastructure components. Monitoring models
provide a systematic foundation for monitoring and archiving data that
characterize the behavior and the boundaries of "normal" behavior for a
Web service. Monitoring, or more general, management models are also the
precursory for tool support and implementing an effective management
solution for a Web service.

Enterprise management will evolve from infrastructure management to
service management. Services will turn management itself into a service,
which is needed to operate (managed) services. Services encapsulating and
abstracting diversity found in infrastructure is another step towards
managing business in conjunction with supporting IT systems. Business-
aware management capabilities can be seen today in management products.

PART III

THE PRACTICE OF WEB SERVICES
MANAGEMENT

Chapter 7

INSTRUMENTATION OF WEB SERVICES

1. INTRODUCTION

In order to manage Web services it is first necessary to instrument them.
This instrumentation may be invasive or non-invasive in nature. Only when
the Web services have been instrumented can operational and management
related data be obtained from them.

2. INSTRUMENTATION

Instrumentation is used to collect management data. The management data
so collected may be used for debugging/testing, visualization/animation
through consoles, or for monitoring and control in management systems.
Instrumentation consists of implementation code that has to be included with
the managed service (either invasively or non-invasively) in order to collect
and export models and raw measurements, to send alarms and generate
events.

Managed
Service

^
^

^
w

/ • '"'-v^m^^^^

Figure 59: Basic abstraction of managed service and a managed system.

187

188 Chapter?

Current enterprise and e-business management systems are tightly
coupled with the managed application and are usually constrained by the
enterprise and management domain boundaries (e.g., firewalls). However, if
the management systems have to manage multiple services that are
distributed either within or across multiple enterprises, a decoupled way of
obtaining and distributing management information has to be decided upon.
There are multiple integration approaches that are possible. The first
integration approach usually employs a proprietary set of interfaces and
instrumentation points to collect the required measurements and apply the
required commands. It also assumes full access to the required information
and full control over the service. In the second and third options, the
managed service exposes a set of well-defined interfaces that can be
exploited by the management system in order to perform its management
tasks. The composition could be governed by a pre-negotiated (option b) or
just-in-time-negotiated (option c) contract. In the second and third options,
the management system could itself be implemented as an outsourced
service.

The interfaces, which tie the management system together with the
managed service, exchange information using Internet protocols and
standards wherever applicable. This facilitates implementing the
management system to collect measurements from the various cross-
enterprise sources and also to control applications and services that are
provided by external suppliers.

management system

(a) Tightly coupled integration

Static composition Dynamic composition
(at design time) (atrun time) •

Management services

(b) Static integration (c) Dynamic integration

Instrumentation of Web Services 189

Figure 60: Managed service interaction.

Instrumentation may be intrusive or non-intrusive in nature. Non-
intrusive instrumentation effectively means not modifying the application in
any way for instrumentation. This usually entails instrumentation of the
environment itself so that every time a service is instantiated or does
something the management data is collected transparently. Non-intrusive
instrumentation has been tried in distributed systems like CORBA [Silvano
1995] earlier. Intrusive instrumentation means inserting instrumentation API
calls into the application thus modifying it. Insertion of API calls is
undertaken to delineate units of works. In this chapter, we examine different
instrumentation techniques and present some of the standard approaches.

2.1 Management Information Exposed Through
Instrumentation

The management information that the managed service may provide to the
management system involves information about:

• Models: A set of models representing the structure and
configuration of the service, state transitions within the service, and
workflow of the supported transactions.

• Measurements: Real-time measurements whenever transactions are
started and stopped at service and sub-service boundaries,
availability heartbeats, contract and offer details, lifecycle state
changes, etc.

• Events: Asynchronous messages sent whenever errors or important
events occur within the service. These could be alarms, traps that the
managed service generates.

• Configuration: A set of parameters representing current service and
environment configuration such as maximum number of users,
authentication requirements, machine type, etc.

• Control points: Interfaces to change the lifecycle state of the
service (e.g., start, stop, suspend, etc.), to improve the availability
(e.g., load-balancing, replication, migration, etc.), or to fix certain
problems (e.g., rollback, re-index, restart, etc.).

2.2 Manageability and Instrumentation Requirements
for Web Services

Web services are federated in nature as they interact across management
domains and enterprise networks. Their implementations can be vastly
different in nature. Some of the common technologies for implementing

190 Chapter 7

Web services are J2EE, .Net. Figure 61 shows a fictional example of
interacting Web services. Employees in a company (workhard.com) use their
internal Web service (supplies.workhard.com) to order day-to-day supplies
and stationery. The internal supplies Web service in turn uses a supplies
marketplace (supplies.marketplace.com) to find the best deals. The
marketplace requests bids from two supplies companies (stationery.com and
officesupplies.com) to fulfill orders. Both the suppliers use a shipping
service (shipme.com) for shipping the ordered products directly to the
consumer.

s ta t ionery.com
suppl ies .

workhard .com

suppl ies .
marke tp lace .com

shipme.com

off icesupplies .com

Figure 61: Instrumentation of an example Web service.

When two Web services connect to each other, they have to agree on a
document exchange protocol and the appropriate document formats. From
then on they can interoperate with each other exchanging documents. SOAP
defines a common layer for document exchange. Services can define their
own service-specific content on the top of SOAP. The execution of a single
business transaction can involve multiple messages being exchanged
between Web services. For example, a purchase order transaction that begins
when an employee orders supplies and ends when he or she receives a
confirmation could result in ten messages being exchanged between various
services as shown in Figure 62.

stationery.com

supplies.
workhard.com

supplies.
marketplace.com

" shipme.com

officesupplies.com

1. purchase order
2. part of purchase order
3. the other part of the purchase order
4. shipping request
5. shipping request

9.
10.

shipping confirmation
shipping confirmation
order confirmation
order confirmation
purchase order confirmation

Figure 62: SOAP messages exchanged between Web services.

Instrumentation of Web Services 191

One such message encapsulated in SOAP is shown in Figure 63. Note
that every SOAP message has a clearly defined header (SOAP-ENV:Header)
and body (SOAP-ENVrBody). The service-specified content is enclosed
within the body of a SOAP message. Headers are typically used to represent
meta-information about messages (e.g., message identifier).

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>

<Id>l</Id>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<PurchaseOrder>

<Item count = 100>Postit stick notes</ltem>

<Item count = 200>Stapler</Item>

</PurchaseOrder>

</SOAP-7ENV:Body>

</SOAP-ENV:Envelope>

Figure 63: SOAP message used in the example.

A typical web-service would get an http request (may contain an XML
document) fi*om the parent web-service (if it itself is not the root service) or
an ultimate consumer. The request is routed from one of the web server in
the web server farm to one of the application modules in the application
server farm. Thereafter, business logic is applied to the request and a new
request can be directly sent to sub web-services through an http request at
this level. The business logic may be implemented in the application server
itself or may be a call to a legacy software that implements it. The response
from the sub web-service is expected at the listener (attached to the web
server farm) that is waiting to receive documents.

Once the corresponding sub web-service responds with a document the
response is sent to the business logic, which in turn sends a response to the
parent web-service. The communication pattern can vary depending on the
implementation. For example, the application logic can send an immediate
response to the parent web-service before receiving response from the sub
web-service. The final response may be sent later. Also, the final response
can be sent directly to the parent web-service by the sub web-service, instead

192 Chapter 7

of being routed through the business logic. In addition the format of
communication is not symmetric in the web-services world.

Web-Service

Parent Web Service Sub Web Service

Business Logic

Figure 64: Web service interactions.

A web-service request may not always have a matching response. In
some cases, all the participating services are like peers, in which case there
is no notion of a request or a response. Some of the message flow patterns
that result from this asynchrony are shown in Figure 65. The first example
shows a single request resulting in multiple responses. The second example
shows a broker-scenario, in which a request is sent to a broker but responses
are received directly from a set of suppliers.

« ^ » SHMI
(a) multiple

responses (b) broker

Figure 65: Asynchronous message patterns between Web services.

Management of Web services is a challenging task because of their
heterogeneity, asynchrony, and federation. Motivations for end-to-end
Web service management arise from the perspective of both clients and
service providers. Clients are interested in tracking their requests and in
understanding bottlenecks or causes for failure of their requests.
Measurements taken at various points along the execution of a transaction

Instrumentation of Web Services 193

are very helpful in analyzing end-to-end quality of the transaction. Service
providers that are using other services to provide composite services
would like to know^ how the component services are behaving. By
studying and observing their behavior a composite Web service would be
able to optimize itself by either changing its component sub services or by
instructing the existing component sub services to improve performance.

2.3 Standards in Instrumentation and Manageability

Instrumentation and manageability has been looked into under various
domains. Some standard exist in these domain. We will discuss Application
Response Measurement, SNMP, and Java Management Extensions (JMX) in
this section.

2.3.1 SNMP

The Simple Network Management Protocol (SNMP) is the protocol
governing network management and the monitoring of network devices and
their functions [Black 1994]. SNMP is described formally in the Internet
Engineering Task Force (IETF) Request for Comment [RFC 2571, RFC
3411] and in a number of other related RFC.

SNMP defines two primary elements: a manager and agents. The
manager is a process usually connected to a console through which the
operator performs management functions on elements in the managed
domain. Agents are processes that interface to the actual elements being
managed. Bridges, Hubs, Routers or network servers are examples of
managed devices that contain managed objects. In addition, applications can
have SNMP agents. Managed elements maintain status information about
themselves in a so-called Management Information Base (MIB). SNMP is
the protocol performed between managers and agents accessing MIB data
[RFC 3411].

SNMP agents provide the instrumentation in a managed domain for
delivering status data to a management system performing management
processes. SNMP agents can answer inquiries for MIB data received from
managers. This is typically used for (polling, which means server-initiated)
monitoring. A SNMP agent may also initiate sending notifications (events)
to the manager through Traps (a push mechanism).

SNMP agents can also alter MIB data on request of the manager.
Hardware devices and application components may be sensitive to
alterations of MIB data. These alterations are done through set operations.
Altering MIB data is used to actuate control operations though the agent.

194 Chapter?

As specified in Internet Requests for Comments (RFC) and other
documents, a network management system comprises:

Network elements — Sometimes called managed devices, network
elements are hardware devices such as computers, routers, and
terminal servers that are connected to networks.

Agents — Agents are software modules that reside in network
elements. They collect and store management information such as the
number of error packets received by a network element.

Managed object - A managed object is a characteristic of something
that can be managed. For example, a list of currently active TCP
circuits in a particular host computer is a managed object. Managed
objects differ from variables, which are particular object instances.
Using our example, an object instance is a single active TCP circuit
in a particular host computer. Managed objects can be scalar
(defining a single object instance) or tabular (defining multiple,
related instances).

Management information base (MIB) — A MIB is a collection of
managed objects residing in a virtual information store. Collections
of related managed objects are defined in specific MIB modules.

Syntax notation — A syntax notation is a language used to describe a
MIB for managed objects in a machine-independent format.
Consistent use of a syntax notation allows different types of
computers to share information. Internet management systems use a
subset of the International Organization for Standardization's (ISO's)
Open System Interconnection (OSI) Abstract Syntax Notation 1
(ASN.l) to define both the packets exchanged by the management
protocol and the objects that are to be managed.

Structure of Management Information (SMI) — The SMI defines the
rules for describing management information. The SMI is defined
using ASN.l.

Network Management Stations (NMS) ~ Sometimes called consoles,
these devices execute management applications that monitor and
control network elements. Physically, NMS are usually engineering
workstation-caliber computers with fast CPUs, color displays,
substantial memory, and abundant disk space. At least one NMS
must be present in each managed environment.

Parties - Newly defined in SNMPv2, a party is a logical SNMPv2
entity that can initiate or receive SNMPv2 communication. Each
SNMPv2 party comprises a single, unique party identity, a logical
network location, a single authentication protocol, and a single

Instrumentation of Web Services 195

privacy protocol. SNMPv2 messages are communicated between two
parties. An SNMPv2 entity can define multiple parties, each with
different parameters. For example, different parties can use different
authentication and/or privacy protocols

Management protocol — A management protocol is used to convey
management information between agents and NMS. SNMP is the
Internet community's de facto standard management protocol.

A"""""

...

Mgr

^ = ^

" " • • • • • • • • • • \

" • • ' • • • - * .

Agent

1

cz
MIB

:

!)

Figure 66: Management with MIB-based management agent.

The Simple Network Management protocol (SNMP) is the de-facto
standard for network and system management (Stalling 1999). In SNMP, a
management system queries the SNMP agents that implement a
Management Information Base (MIB) through get/set operations. The
SNMP Agent can send traps to the Management System through the
transport layer. Attempts have been made to extend the SNMP to application
management by defining relevant MIB. System Application MIB and
Application Management MIB are efforts in that direction.

Management

System

get/set

trap

^ 3
Figure 67: Schema for Simple Network Management Protocol (SNMP).

196 Chapter?

132 System Application MIB

The Internet-standard Systems Application MIB, RFC 2287, provides
mechanisms to obtain information related to applications without
instrumentation. The Systems Applications MIB yields a list of installed
applications on each system, the elements that make up each application, and
the activity information about each element. The objects in the MIB are
arranged in the following groups:

System Application Installed Group

- SysApplInstalledPkgTable

- sysApplInstallElmtTable

- System Application Run Group

- SysAppIRunTable

- SysApplPastRunTable

- SysApplElntRunTable

- SysApplElmtPastRunTable

Scalars fpr restricting table sizes

System Application Map Group

- SysApplMapTable

The System Application Installed group consists of two tables. These
tables are used to determine which applications are installed on the system
and what their constituent components are. The first table
sysApplInstallPkgTable details the application packages installed on a
particular host. The second table the sysApplInstallElmtTable provides
information regarding the executables and non-executable files or elements
that compose an application.

The group models activities that have been invoked or are running. The
tables describe information about the currently executing and past run
applications and elements.

The system Application Map group contains a single table, the
sysApplMapTable, whose intent is to provide a backwards mapping for
determining the invoked application, installed element, and installed
application package given a known process identification number.

2.3.3 Application Management MIB

This Application Management MIB specification includes additional
attributes that will typically require instrumentation within the managed

Instrumentation of Web Services 197

resource. The sysApplRunElmtlndex is the key connection between these
two MIB; it is essential that implementations of this MIB and of the system
applications MIB running concurrently on a given platform employ a
consistent policy for assigning this value to identify running application
elements. The application management MIB:

Requires cooperation from instrumentation.

Extends sysAppl MIB.

Provides service level view.

Provides info on open channels, transactions, connections.

Process level status information and control.

Capabilities to suspend, resume, reconfigure and terminate
processes.

Service-level tables

The service-level tables permit the identification of one or more instances
of named services on a system, and the association of running application
elements to these services. In deciding what should or should not be
considered a service, the following factors merit consideration:

- Is there an identifiable set of resources associated with providing
this service?

- Is there a reasonably long-lived server or client process?

Transaction related tables

The transaction stream summary table contains per-stream summaries of
transaction statistics. Transaction flow statistics table contains statistics
broken into both transmitting and receiving counts for requests and
responses on each stream. The transaction kind statistics table contains
summary information organized by direction, request/response, and
transaction kind for each stream.

Former tables

Former channel group, channel, connection, file tables provide
information about former groups of channels, channels that have been
closed, formerly open channels that were connection, connection-specific
historical information

Transaction history tables

Tables provide per-transaction-kind breakdowns for channels carrying
transaction-structured flows.

198 Chapter?

This table provides information for a running application element.
Indexed by the sysApplElmtRunlndex, an entry in this table reports useful
information on that running element's resource usage. Entries in this table
contain:

- current heap usage for this running application element.

current number of open network connections for this running
application element.

- the most recent error status message issued by this running
application element.

Running Application element control table:

Variables in this table include:

suspend/resume control,

- reconfiguration request control, and

- termination request control.

2.4 Application Response Management (ARM)

Transaction measurement is an important aspect of Web service and
application management. The ARM API (ARM) is a simple API that
applications can use to pass vital information about their transactions. A
transaction is loosely defined as any unit of work within the application logic
that can be marked with a "start" and "stop". Examples of transactions
include:

1. body of a function or method (start at the beginning of the function
and stop at the end of the function)

2. a critical section of code (start at the beginning of the critical section
and stop and the end of the critical section)

3. the lifetime of an object (start in the constructor of the object and stop
in the destructor)

4. a "purchase order" transaction (start when the user initiates a purchase
order and stop when the user is given a confirmation number)

5. A "book buying" experience (start when the user logins in to a web
site and stop when the book is shipped to or received by the user).

The exact number and nature of transactions are left to the discretion of
the application developer. From the above examples, it can be noted that
transactions can represent a contiguous piece of code (e.g., 1, 2) or
functionality spread across several methods or components (e.g., 3, 4, 5).
They can be used to represent system/application logic (e.g., 1, 2, 3) or

Instrumentation of Web Services 199

business logic (e.g., 4, 5). Further, transactions can be short-term (execution
completes within seconds or minutes) or long-term (execution takes days or
months to complete). However, in all these cases, there should be a well-
defined "start" and "stop" that could be inserted into the apph'cation logic to
mark the boundaries of the transaction.

^ . _ ,

S e r v i c e 2 ^im,mmmmmmmmmmmmmmmmmma.m^

S e r v i c e 1 ^̂"̂ ^'"''^^ '"'^ «««««»*«««•

..^^WiHpppp^

^ i r w * ^

Mnm%tmmi S îŝ teî '

• ASM AH A ARM AH A

Figure 68: Service correlation with measurements in ARM.

ARM provides APIs that can be used to delimit sections of application
code base to monitor time spent in those sections. These APIs correspond to
starting and stopping of code sections and assigning handles to them for
manipulation by the local ARM Agent. In addition to measuring transactions
in isolation, it is often beneficial to relate transactions with each other. The
parent-child relationship ties a parent transaction to its sub-transactions. This
can be used to measure the parent transaction as a whole and to relate that
measure with the measures of each of the sub-transactions. A common use
of this is to define a parent transaction as the client-initiated transaction and
to define sub-transactions for portions of the parent transaction that execute
within server components (Figure 68).

For instance, a purchase order transaction initiated in a browser in an e-
commerce application could be defined as the parent transaction while the
resulting execution in a web server could be defined as the sub-transaction.
The parent-child relationship is established by passing a correlator from the
parent transaction to the child transaction. A correlator is a unique identifier

200 Chapter 7

that can be used to distinguish one instance of a transaction from another. In
the example above, the browser passes a correlator to the web server.

As described in the previous section, web-service undertakes
conversations with other web-services, which involves multiple interactions
(exchange of documents). These web-services are federated and distributed
with varied implementations. In addition, their interactions are asymmetric
and asynchronous in nature. The ARM API provides the capability of
furnishing of application data in the form of data buffers that are maintained
by the ARM library.

arin_init (''Application Name", ''User Name") ;
arm_getid("Transaction A")
arm_getid("Transaction B")
arm_getid("Transaction C")

loop until the program ends
arm_start(A)

do some work
arm_start(B)
do some work

arm_stop(B, status)

arm_start(C)
loopuntiltransaction ends
do some work

arm_update (C)
end loop
arm_stop(C, status)

arm_stop(A, status)
arm end

Figure 69: Example ARM document

In ARM, the correlation data is sent to a central correlation application
that undertakes the task of linking up the transactions with their component
transactions. Since ARM assumes a centralized correlation application, a
concern with ARM thus is that tracing any application flows may
overwhelm the correlation application and/or the network with the volume of
data collected at the agent, and being sent to the correlation application.
ARM is also ill suited to the asynchronous and asymmetric interaction
model that web-services operate in. ARM is also designed to maintain
transaction level data while web-services need conversation monitoring. The

Instrumentation of Web Services 201

ability provided by ARM to relate a sub-transaction to a single parent is also
inadequate. In Web services, a single piece of functionality may participate
in two or more logical transactions at the same time. This is the n-D
correlation problem. Certain extensions may be provided for extending
ARM to Web services [Sahai 2001].

Also as in ARM, it is assumed that all the data is sent to a central
correlation application, it may not be practical in scenarios where the Web
services belong to multiple enterprises. In such a case the management data
has to reach the management system across enterprises. Also since the
documents exchanged between Web services are all different, passing the
correlator for a conversation is a difficult problem. These entail certain
changes to the basic premise of ARM.

2.5 Application Response Time Measurement (ART)

Application Response Time Management Information Base (ART MIB)
from NetScout extends Remote Monitoring 2 (RMON2) which provides a
mechanism of classifying application traffic. The application flows can be
identified by the RAT MIB. Initial set of TCP based applications that are
supported includes SAP R/3, Baan, PeopleSoft, e-mail, web, database and
file-transfer applications. The ART MIB also provides capability for STslMP.

2.6 Windows Management Instrumentation (WMI)

Windows Management Instrumentation (formerly known as WBEM)
from Microsoft provides the capability to obtain real time data from
hardware components that are based on Windows Driver Model. It enables
effective management of PC and server systems in enterprises. WMI
complements SNMP and uses CIM. WMI provides a consistent and richly
descriptive model of the configuration, status, and operational aspects of
Windows operating system. It provides the facility of publishing kernel
instrumentation, configuring device settings, providing kernel-side event
notification, publishing custom data, allowing administrators to set data
security and accessing instrumentation by way of WMI. The WMI Service
Development Kit (SDK) is also available. WMI is designed for programmers
who use C/C++, the MS Visual Basic Application, or a scripting language
that handles MS ActiveX objects. Some amount of COM familiarity is
desirable.

202 Chapter 7

2.7 Java Management Extensions (JMX)

Java Management Extensions (JMX) is targeted at resources that are
either implemented in Java or are wrapped by Java classes. Such resources
that intend to become manageable may use JMX.

Figure 70: JMX management extensions.

It provides supports for management at the instrumentation level, at the
agent level and at the distributed services level as shown in Figure 70. The
Managed Bean (Mbean) is used to represent the resources being managed. A
Mbean server may be used at the agent level to manage a set of Mbeans. The
Mbean Servers may be located on multiple hosts and on different Java
Virtual Machines (JVM). The Agent services may also be represented
through Mbeans. JMX Manager(s) or Browser may access the Mbean
servers through connectors and protocol adaptors

2.7.1 Instrumentation Level

The instrumentation level specification provides means for implementing
JMX manageable resources. A JMX manageable resource may be an
application, a service implementation, a user, a device etc. JMX manageable
resources are automatically manageable by JMX Agents. An Mbean
(Managed Bean) is a Java object that implements the management interface.

Instrumentation of Web Services 203

Managed Bean (Mbeans) have the following capabilities for making
resources manageable,

Constructors that initialize the Mbean.

Valued attributes that can be accessed.

- Operations that can be invoked.

- Notifications that can be set.

There are four different types of Mbeans: Standard, Dynamic, Open,
Model. The notification model is defined in JMX so that the Mbeans and the
agents may use the notification mechanisms. The specification describes the
notification objects, the broadcaster, and the listener interfaces that the
objects must implement to use notification mechanisms.

2.7.2 Agent Level

Management Agents monitor, and control JMX manageable resources
and expose their information to management systems. The JMX Agent
comprises of a JMX Server and set of services. The JMX may be embedded
into the same virtual machine as the one being used by JMX manageable
resources or may be a stand-alone mediator if the manageable resources are
non-java or are located on a different machine.

Mbean server: enables registration of Mbeans and access to
operations of the Mbean.
Services: The services that the Mbean server provides are
related to Notification, Querying, Monitoring, Relationships.

2.7.3 Distributed Services Level

The distributed services layer enables the management applications to
interface with the management agents.

Provide interface for management systems to interact with JMX
agents

Expose management view and consolidate views

Provide security

2.8 Log File Analysis

The Web services may face hundreds of millions of hits per day. It may
support batch import of multiple Web server logs. Due to high data volumes
of user hits, it can be necessary that Web Server logs must be rotated putting
one log into the hot spot where logged data arrive at high speed, and

204 Chapter 7

allowing the other logs to be processed. Web Server log rotation may happen
once a day or more frequently. To track visits across multiple, distributed
servers, the Web log reader component sews together the information into a
chronologically ordered sequence in order to have a full picture of users and
visits across servers.

Figure 71 shows the principle of Web services Log analysis. While
clients (users in the user-to-service scenario or other services in the service-
to-service scenario) are interacting with a Web service, the Web server
which is the first tier processing a client request, reports log information
about the request in the Web server log file in raw format. The following tier
represented by the application server typically extracts more application-
oriented information from the request and logs this information in its log
file.

client •
request Web Server Application

Server
^ further processing

the client request

log

y

Lc

r
1

Lo
.. 1

Log File(s)

log

1 r r
App Server

Log File

^
read ^

Raw Web server logs Application server logs

Log File

Analyzer report

•
Web service

Metric Analyzer

Figure 71: Web services log file analysis.

The Log File Analyzer periodically reads log files, extracts relevant
information, which it reports to the Web services Metric Analyzer.

The Web log reader must be flexible in order to access logs automatically
across the network and support different log naming conventions. It must
also be able to differentiate identically named logs across serx^ers,
understand all standard log formats, and in adapt easily to customized
formats. While the Web log read process is fully automatable, it can also be
run manually to deal with logs that have been delayed or to import historical
Web log data.

Given the diverse environments of possible installations, an important
Web log reader capability is the automatic detection of log file formats for
the leading Web servers. Data from these different sources can be seamlessly
sewn together and imported simultaneously. And, as an option, Web hits can
be sampled for a given set of users, allowing reduction of the overall data
stream while maintaining the validity of paths and visits for the reduced set
of Web log information.

Instrumentation of Web Services 205

2.9 Network Packet Sniffing

An alternative or supplement to importing Web server logs is network
packet sniffing. Network packet sniffing is a known method in network
management. Network sniffers tap into networks and gather traces of
network activity. Network sniffers can trace network activity at different
network layers:

SOAP (Simple Object Access Protocol) layer,

- HTTP (Hypertext Transport Protocol) layer,

- TCP (Transmission Control Protocol) layer,

- IP (Internet Protocol) layer, and

- Physical link protocol layer.

The SOAP (Simple Object Access Protocol) layer transfers XML
messages using the SOAP protocol. SOAP specifically is used for service-
to-service interactions. SOAP in most cases is based on HTTP. Tracing
SOAP flows allows identifying which service interacted with which other
service by referring to the SOAP header.

The HTTP (Hypertext Transport Protocol) layer is used as basic transport
protocol in the Web. HTTP is user for service-to-service interaction
underlying SOAP. HTTP is also used (and originated) in the user-to-service
area for serving Web pages in HTML to Web browsers. HTTP traces
obtained by network sniffers are helpful to identify which interactions at
HTTP level occurred.

The TCP (Transmission Control Protocol) layer underlies HTTP and
provides reliable communication between two endpoints (e.g. a server and a
browser) with flow control capability. TCP network sniffing is primarily
used in network analyzing tools for identifying network problems.

The IP (Internet Protocol) layer underlies TCP and provides the overall
connectivity in the various kinds of Internet (public Internet, intra- and extra-
nets). IP provides packet-switched network routing based on IP addresses
such as 15.9.34.78. IP network sniffing is also primarily used for analyzing
network problems and root cause analysis in networks.

The Physical link protocol layer provides physical linkage of devices,
network cards, etc. to switches and routers in a network.

Usually located on a dedicated machine on a Web server's network
segment, a sniffer can capture the application data contained in the TCP/IP
packets streaming past it and output the results in a standard log file format.
Because of their location, sniffers can detect low-level network events such
as the network disconnect that is sent when a user clicks a link before a page

206 Chapter 7

has completely loaded. And because a sniffer monitors the network directly,
it simplifies log file management. For example, it eliminates the need for
sewing multiple logs when the servers are all on the same network, since this
is accomplished by the multi-access nature of the network itself.

Figure 72 illustrates how network packet sniffers can be applied at
different layers of the network stack. Typically, sniffing at IP layer only
provides raw data, which is typically only helpful for network management.
Sniffing network connections at TCP layer provides information about
duration of a connection to clients mediated through one TCP connected.
HTTP sniffing already provides information about URLs used in the HTTP
header, or eventual attachments appended in the HTTP body. Sniffing at
higher layers such as the SOAP layer provides detailed insight in exchanged
messages between services.

protocol
layer:

^ further processing

SOAP ^̂ ^ client request

Network

Sniflfer

^

report

r

Metric Analyzer

Figure 72: Network packet sniffing at different protocol layers.

The major advantage of network sniffing is that no instrumentation in
Web servers or application servers is necessary. However, since the stack of
protocols needs to be reconstructed in sniffers, realization of higher-layer
network sniffing may become complicated.

Furthermore, in a secure Web environment using SSL encryption, a
sniffer cannot decode the application layer of the packet without the
decryption key. And sniffers may not be appropriate for hosted
environments where other clients may share a LAN but do not wish their
data sniffed. Virtual LAN technology can help preventing other client's data
being sniffed without their knowledge.

The sniffer can be deployed quickly where desired. It is highly scalable
(up to the limits of the Network Interface Card of the machine on which it
runs) and writes information out in a standard W3C log format or in an
extended log format.

Instrumentation of Web Services 207

The higher layer network sniffing is applied, the closer obtained data is
to business interactions of interacting Web services. Network sniffing at
lower layers (physical link protocol, IP) often is of less relevance for
business-aspects of Web services metric analysis. It is more relevant for
network management.

2.10 Web Server Plug-ins

The third data collection option is to use a Web server plug-in. Even if a
site is using a dynamic content engine or an application server, it still needs
a Web server. Netscape, Microsoft Internet Information Server (IIS) and
Apache account for over 90% of all Web servers. Each of these platforms
provides an API or interface in order to extend and modify the information
that is logged in the log file. A Web service Metric Analyzer typically has a
number of available plug-ins that can be deployed at the used Web server
platform.

request

client ——•
Web Server

AppIrcatioR
Server

^ further processing

the client request

Log File

Analyzer

mMfMMM

• i l l
Billl

report

T

lllilli
Analyzer Figure 73: Web services Log File Analysis.

Figure 73 shows how a Web server plug-in is used to extract relevant
information form the request routed through the Web server. Web server
plug ins can be closely linked with application servers depending on the
implementation. Web server plug-ins can be deployed to implement sniffing
at HTTP or higher protocol layers.

Web server plug-ins are also useful for tracing sessions a client currently
uses to interact with the Web side. Typical Web Server plug-in modules deal
with cookies, POST data, and the performance of requests.

A cookie is a piece of information a Web site can leave at the machine
from where a client accessed the Web site. This information can be retrieved
at later visits and used for various purposes such as:

- re-establish a client's session,

- re-instantiate a client's shopping cart,

remember time, date and path of first visit.

208 Chapter 7

Cookies in general are a valuable information source. Through reading
cookies, information about other (competitive) sites can be extracted without
the client becoming aware of it. This information can then be used to
customize Web presentations to ch'ents (e.g. highlighting in what regard an
offer is better than the offer of the competition).

A Web server plug-in can also track existing visits or user cookies
created by other applications. The cookies can then be written to the Web
server log file for later analysis. Logging POST data through a plug-in is
particularly useful for e-commerce sites and other sites with forms that use
POST data. Finally, a server performance plug-in can be used to measure
and log how long requests take on a site concluding to an overall user
experience visiting a Web site.

- non-standard log file formats,
- treatment of anchors (links within a page),
- treatment of request redirection,
- resource exclusions (such as images),
- reconstruction of visits that span log file boundaries over time,
- exclusion of robots and spiders,

click-path sampling options by percentage,

- page title or site name lookup,
- use of authenticated user names, or

use of external referrals to begin a new visit.
With these rules, the basis is provided for gathering and processing

meaningful and valuable metrics.

2.11 SOAP Instrumentation

It is necessary to interfere with message exchanges among web services
in order to collect information about the interactions with business partners.
An acceptable solution should not impose any modifications or limitations
on existing web services. SOAP is the standard for web service interactions.
A small proxy component that tries to capture incoming and outgoing
messages, and records data about the message exchanges, then forwards the
captured messages to the actual recipients could be another approach for
gathering management data about web service interactions. The most
popular implementations of SOAP toolkits share common components,
called routers. SOAP routers receive the messages from SOAP clients and
submit them to the receivers. SOAP toolkit encrypts the message at the

Instrumentation of Web Services 209

sender site, and decrypts it only when it reaches the receiver's site. A proxy
can be easily attached to SOAP toolkit routers with minor modifications to
the toolkit. This is the most appropriate way to automatically attach a proxy
in order to capture SOAP messages and collect information from those
messages. It does not require any modifications to existing web services, and
does not require re-compilation of existing SOAP toolkit installations. We
used this approach for collecting data from SOAP message exchanges
among web services.

In order to correlate individual message exchanges with each other, a
notion of Global Flow (GF) can be used. A Globally Unique Identifier
(GUID) is used for keeping track of a GF. Every time the proxy component
catches a message that is exchanged between web services, it first checks
whether a GUID exists. If a GUID does not exist in the message, the proxy
inserts a GUID into SOAP header of the message. All web services and
other software components propagate the GUID in their communications.
Consequently, the proxy components that are attached to SOAP toolkits at
business partner sites can easily figure out which SOAP message is sent in
the context of which previous messages. These correlators may also be
passed as correlator sets as defined in BPEL4WS.

2.12 Handling Dynamic Content

Many Web sites provide dynamic content by constructing and returning
pages on the fly. A content management system may take into account the
users profile or recent activity. Details about the actual served content
resources are often encoded as query information attached to the URL. This
enables deeper analysis of the actual information delivered to the user.

An example of this scenario is a Microsoft Active Server Page (ASP)
environment, where every URL ends with index.asp. Reporting that every
user accessed this URL is not particularly interesting. The content that is
delivered, and hence the interesting analysis, is based on the query string
attached to the URL. Other dynamic content servers differ in the details of
the URL and query string syntax, but all of them are handled similarly.
Maintaining aggregate counts based on query strings completes the reported
information and makes query string analysis highly efficient.

210 Chapter?

SUMMARY

While instrumenting Web services, it is useful to identify the important
business transactions that have to be measured. It is also important to
identify which transactions are created in the context of another transaction.
This is important to identify parent-child relationships between transactions.
The parent child relationship identification is necessary to trace the end-to-
end flow of transactions through distributed client/systems.

It is also important to keep in mind the target audience for the
instrumentation data and the corresponding performance degradation that
excessive instrumentation may result into. Certain standards like ARM,
SNMP, and JMX exist for instrumentation/manageability of applications.
The instrurhentation data so obtained may be aggregated and used for
calculating higher-level metrics. These higher-level metrics may form the
basis of Service-Level Agreements (SLA) and may populate the business-
level views exposed to business managers.

Chapter 8

MANAGING COMPOSITE WEB SERVICES

1. INTRODUCTION

Web service to Web service Management is important, whether these
Web services are all inside the enterprise or in different enterprises. Web
service to web service communication could mean a single-step transaction
(e.g., a login to a book-selling service), a sequence of related transactions
(e.g., logging in, adding books to shopping cart, and checking out), or even
business-level processes perceived by the client that may involve manual
steps (e.g., the process from ordering books to final delivery of the books).
For every step in an interaction, one of the two services initiates the request
and the other executes the request. So they execute the traditional roles of
consumer and producer. These Web services can take any or both of these
roles depending on their interactions with other Web services. When Web
services undertake dual roles it leads to Web service composition.

We refer to the service that initiates the request as the consumer service
and the one that executes the request as the provider service. The role of a
service could change over the course of an interaction.

From a consumer's perspective, a provider service is manageable if the
latter offers sufficient visibility and control over itself and over the
interactions it executes. For example, a provider that provides information
about the progress of a consumer's ongoing interactions or an ability to
escalate their speed is more manageable than a provider that does not. From

211

212 Chapter 8

a provider's perspective, a consumer service is manageable if it can offer
enough information about its service usage back to the provider.
Manageability interfaces capture the functionality that should be offered by
providers and consumers to each other in order to be manageable.

2. WEB SERVICE COMPOSITION

A consumer service can also afford to choose its provider services. The
choice is usually based on the consumer service requirements that can be
classified into quality of service and service-specific requirements. This
process can be generalized to create Web service optimization logic. The
logic can be executed on the management data dynamically obtained from
the set of provider services to choose the right set of provider services. This
process is similar to a tender process in which a set of providers submit
tenders for a job and the consumer makes a qualified decision to choose the
right party to do the job.

Figure 74: Service relationships.

A service will choose its partners carefully. The decision of a Web
service to choose its partners would be based on certain requirements. This
optimization process can be generalized to an extent in spite of the fact that
it will be guided by the business logic. A service will typically look for its
partners with the best performance, availability, reliability, and/or certain
business-specific logic (e.g., minimum cost, shortest distance, etc).

A set of requirements can be drawn up:

Min (response times).

Managing Composite Web Services 213

Max (uptimes),

- Min (failure rates).

Max (service credibility),

Min (cost involved).

Depending on the weights attached to the above parameters optimization
logic can be created by the Web service for its optimization. A consumer
that is interested in performance and cost will associate them higher weights
than say availability and reliability. A Web service may not attach too much
significance to the rating and may be willing to choose a service with
average ratings. This could be a global optimum problem on multiple
dimensions.

A set of data structures can be defined. Min, Max, Average, Medium,
and Random functions operating on these data structures have to be defined
as well. A service optimization decision would thus involve finding the
global optimum over multiple dimensions taking into account the weights
associated with the parameters like reliability, availability, performance,
cost, etc.

3. MANAGING WEB SERVICE TO WEB SERVICE
INTERACTIONS

Before Web services can however start interacting with each other a set
of requirements have to be fulfilled. These requirements exist in terns of the
following:

Web services will execute transactions as a result of these interactions.
These transactions have to be of all-or-nothing kind i.e they have to be
atomic.

The messages exchanged between Web services have to be sent reliably
and may have to be resent if they fail to arrive at the other Web service

These operations have to be secure. Security plays an important role in
Web services especially if critical functions have to be carried out through
Web services.

214 Chapters

3.1 Web Service Transactionality

While Web service Description Language describes the operational
interfaces for the Web service, it is important to ensure transactionality for
the operations executed by one Web service with another. Especially when
web services are used for operations that need to be transactional, it is
important to ensure that these operations are committed or rolled back
properly. The transactionality for Web service interactions ensures that the
transactions are atomic. Usually a coordinator and a coordination protocol is
required that agrees to commit an outcome of a transaction. The coordinator
determines if there was any failure by asking participants to vote. If the
participants all vote saying that they successfully finished a transaction, the
coordinator commits all actions taken. If a participant decides that it needs
to abort or no response comes back from a participant, the coordinator aborts
all transactions. A commit makes the transaction persistent and visible to
other transactions. By imposing atomicity, failure and recovery semantics
may be applied to transactions. The participating Web service parties can
mutually agree on outcomes of transactions.

The 2PC (two-phase commit) protocol is a Coordination protocol that
defines how multiple participants reach agreement on the outcome of an
atomic transaction. The state diagram in Figure 75 specifies the behavior of
the two-way protocol as the exchange of messages between a coordinator
and one of its participants.

The state reflects what both sides know of their relationship. Details
such as resending of messages or the exchange of error messages due to
protocol error are omitted.

The coordinator sends the Prepare, Rollback and Commit messages.
The participant returns the Prepared, ReadOnly, Aborted and Committed
messages.

The 2PC protocol makes a "presumed abort" assumption to minimize
work for normal commit case. Presumed abort means that no knowledge of
a transaction implies it is aborted, which allows the following optimizations:

A coordinator can delay logging anything about the transaction until the
commit decision.

A participant can terminate the protocol and remove details of the
transaction after sending an Aborted or ReadOnly statuses to the
coordinator during phase one. No acknowledgement message from the
coordinator is needed.

Managing Composite Web Services 215

Register

iollba

Coordinator generated Participant generate<l̂

Figure 75: Protocol State Diagram for Two-Phase commit protocol.

After a Prepared status is received during phase one, an abort outcome
allows a coordinator to forget the transaction after sending the Rollback
message to its participants. No acknowledgement message fi-om the
participant is needed.

Only after a Prepared status is received, a commit outcome requires a
coordinator to remember the transaction until all Committed
acknowledgement messages have been received fi*om its participants.

The coordinator initiates the protocol and requests participants to vote by
issuing a Prepare message. The participant while processing the prepare
message, can do either of the following:

It can reply with a ReadOnly status, which indicates that it votes to
commit and does not need to participate further in the 2PC protocol. In this
case, the two-party protocol is in the Ended state.

It can reply with an Aborted status, which indicates that it votes to not
commit and does not need to participate further in the 2PC protocol. In this
case, the two-party protocol is in the Ended state.

It can reply with a Prepared status, which indicates that it votes to
commit. In this case, the two-party protocol is in the Prepared state. A
Prepared status also indicates that the participant has reliably stored
information needed to either commit or abort even if it subsequently fails.

216 Chapter 8

If during the Preparing state the coordinator sends the Rollback message,
the participant enters the Aborting state.

For the overall transaction, once all Prepared reply messages have
returned, the coordinator decides whether the outcome for the overall
transaction is to commit or abort. It permanently records the decision on
stable storage and sends the Commit or Rollback to all participants, leaving
each of the two-party protocols in the same Committing or Aborting state.
When each participant has finished committing or aborting, it replies with a
Committed or Aborted acknowledgment.

The state diagram in Figure 76 specifies the behavior of the protocol
between a coordinator and one of its participants. The state reflects what
both sides know of their relationship. Omitted are details such as resending
of messages or the exchange of error messages due to protocol error.

Register
" «̂.A.borted

*v
Aborted

Commit ^ C ^ ' ^ t i n ^

^V^

Coordinator generated ^PSi;B9^I^L9^9SL^?^PP~^

Figure 76: One-Phase Commit Protocol State Diagram.

The coordinator sends the Commit and Rollback messages.

The participant sends the Committed and Aborted outcome status
messages.

The coordinator begins by sending a Commit or Rollback request,
putting the two-party protocol in the Completing or Aborting state. The only
outcome of the Aborting state is for the participant to send an Aborted
status message. While in the Completing state, the participant can decide on
either commit or abort, returning a Committed or Aborted status message.

The above state diagram did not discuss failure semantics. The Replay
message can be use by a participant to solicit the transaction outcome from
the coordinator after failure, where the participant provides its protocol
service port reference. An acknowledgement is not needed, because the
coordinator will begin sending protocol messages.

Managing Composite Web Services 217

The participant's 2PC service is defined as:

<wsdl:portType name="2PCParticipantPortType">
<wsdl:operation name="Prepare">

<wsdl:input message="wstx:Prepare" />
</wsdl:operation>
<wsdl:operation name="OnePhaseCommit">

<wsdl: i npu t message="wstx :OnePhaseCommit" />
< / w s d l : o p e r a t i o n >
< w s d l : o p e r a t i o n name="Commit">

<wsdl:input message="wstx:Commit" />
</wsdl:operation>
<wsdl:operation name="Rollback">

<wsdl:input message="wstx:Rollback">
</wsdl:operation>
<wsdl:operation name="Unknown">

<wsdl:input message="wstx:Unknown" />
</wsdl:operation>
<wsdl:operation name="Error">

<wsdl: input message=="wstx : Error" />

</wsdl:operation>

</wsdl:portType>

The coordinator's 2PC service is defined as:

<wsdliportType name="2PCCoordinatorPortType">
<wsdl:operation name="Prepared">

<wsdl:input message="wstx:Prepared" />
</wsdl:operation>
<wsdl:operation name="Aborted">

<wsdl:input message="wstx:Aborted"/>
</wsdl:operation>
<wsdl: operation name=="ReadOnly">

<wsdl:input message="wstx:ReadOnly"/>
</wsdl:operation>
<wsdl:operation name="Committed">

<wsdl:input message="wstx:Committed"/>
</wsdl:operation>
<wsdl:operation name="Replay">

<wsdl:input message="wstx:Replay"/>
</wsdl:operation>
<wsdl:operation name="Unknown">

<wsdl:input message="wstx:Unknown" />

218 Chapters

</wsdl:operation>
<wsdl: operation name--"Error">

<wsdl:input message="wstx:Error"/>
</wsdl:operation>

</wsdl:portType>

A party should be prepared to receive duplicate notifications and respond
back to the source in a manner consistent with the current state of the target.
Replay informs a party that the sender is recovering. In response the party
should respond back to the source in a manner consistent with the current
state of the target.

If a party receives a notification protocol message for an unknown
transaction, it should transmit an Unknown notification back to the source.

The outcome notification protocol is used by applications to find out
when a transaction has completed and what the outcome is.

The state diagram in Figure 77 specifies the behavior of the protocol
between a coordinator and one of its participants. The state reflects what
both sides know of their relationship. Omitted are details such as resending
of messages or the exchange of error messages due to protocol error.

Register

*^(^M^y
Notlfle<i

Coordinator generated^ E^!53&l^9fM';3teci^

Figure 77: Outcome notification protocol state diagram.

The outcome notification protocol is used by applications to find out.

The coordinator sends the outcome notification indicating either a
Committed or Aborted status. The Notified message is a simple
acknowledgement that the outcome notification was received. The
coordinator must remember the outcome until this acknowledgement is
received.

Managing Composite Web Services 219

The participant's OutcomeNotification service is defined as:

<wsdl:portType

|name="OutcomeNotificationParticipantPortType">

<wsdl:operation name="Committed">

<wsdl:input message="wstx:Committed"/>

</wsdl:operation>

<wsdl:operation name="Aborted">

<wsdl:input message="wstx:Aborted"/>

</wsdl:operation>

<wsdl:operation name="Unknown">

<wsdl:input message="wstx:Unknown" />

</wsdl:operation>

<wsdl:operation name="Error">

<wsdl:input message="wstx:Error" />

</wsdl:operation>

</wsdl:portType>

The coordinator's OutcomeNotification service is defined as:

<wsdl:portType

name="OutcomeNotificationCoordinatorPortType">
<wsdl:operation name="Notified">

<wsdl:input message="wstx:Notified"/>
</wsdl:operation>
<wsdl:operation name="Replay">

<wsdl:input message="wstx:Replay"/>
</wsdl:operation>
<wsdl:operation name="Unknown">

<wsdl:input message="wstx:Unknown" />
</wsdl:operation>
<wsdl:operation name="Error">

<wsdl:input message="wstx:Error"/>

</wsdl:operation>

</wsdl:portType>

A party should be prepared to receive duplicate notifications and respond
back to the source in a manner consistent with the current state of the target.

Replay informs a party that the sender is recovering. In response the
party should respond back to the source in a manner consistent with the
current state of the target.

If a party receives a notification protocol message for an unknown
transaction, it should transmit an Unknown notification back to the source.

220 Chapter 8

3.2 Web Service Reliability

The messages that Web services exchange have to be received reliably.
These SOAP messages have to be sent to the receiving Web service with
guaranteed deHvery, without duplication, and with guaranteed message
ordering. The basic requirements are:

- Guaranteed message delivery, at least Once semantics

- Avoiding duplication in a guaranteed manner, At most once
semantics

- Guaranteed message ordering within a context delimited using a
group id.

SOAP Node

(Sender) r

^

^
^ ...V

SOAP Node

(Receiver)

Figure 78: Sender and receiver exchanging SOAP messages.

For a message to be reliably sent from a Sender to a Receiver, both being
SOAP nodes, a return message has to be received. The return message may
be an acknowledgement of the received message or may be a fault message.
All reliable messages must carry a globally unique message Id. The return
message is correlated with the original message through message Id. The
acknowledgement thus must contain the original message Id. The messages
also are time stamped. The time stamp must correspond to the XML
Schemas (W3C).

The Sender Node must keep sending the original message with the same
message Id until it either gets a reply (containing the message id) or exceeds
the number of retries. In the latter case the sender must inform the
application layer about the failure.

Both Sender and Receiver must persist the message till the handshaking
is over or the time to live element is exceeded. A non-volatile storage
memory must be used for persistent messages.

Duplicate elimination must happen at the receiver side. Duplicate
messages can arrive because of intermittent failures or routing problems.
The receiver must remove duplicate messages with the same message Id.

Managing Composite Web Services 221

The Sender and Receiver also must collaborate to provide proper
sequencing between messages. The messages are numbered inside a group
Id. If messages arrive out of order the Receiver must order them and then
make the messages available to the application layer.

A reliable message contains:

- MessageType element,

- Reply To element,

TimeToLive element,

AckRequested element,

- DuplicateElimination element.

In case of failures, SOAP fault messages have to be generated. The
SOAP fault codes have to be extended for reliability elements. They would
be of type:

InvalidMessageHeader,

InvalidMessageld,

InvalidRefToMessageld,

InvalidTimeStamp,

InvalidTimeToLive,

InvalidReliableMessage,

InvalidAckRequested,

InvalidMessageOrder.

3.3 Web Service Security

Most of the security technology relies on cryptography and the
possession of secrets (keys). Alternative technologies such as biometric
characteristics may become pervasive over the course of time. Cryptographic
algorithms can be classified into those where the same key is used to encrypt
and decrypt data and those with different keys. The first category is also
referred to as symmetric encryption since the same key is used in both
directions implying that this key has to be protected from disclosure. For this
reason, algorithms of that category are also referred to as secret-key systems.
The most common symmetric, secret key algorithm is DES (Data Encryption
Engine). IDEA is another popular symmetric encryption algorithm.

Since distribution of keys is a problem with a high potential of attacks,
public-key crypto systems have emerged. Unlike symmetric secret key
algorithms, public-key encryption algorithms use two different keys, one
(public) key for encryption, and one (secret) key for decryption. Anyone can

222 Chapter 8

encrypt data with an individual's public key. But only the individual can
decrypt data with its secret key. Based on this principle, a variety of
protocols can be established. Mathematically, most public-key systems are
based on one-way hash functions. The most popular algorithm is RSA
[Rivest-Shamir-Adleman].

Based on cryptographic algorithms, security technology has emerged in
networks that also apply to Web services. A general overview over common
security technology applied in networks in which Web services are deployed
should be given first. After that, new security technology emerging with and
being specific for Web services will be discussed in the second part of this
section.

3.3.1 Secure Data Communication and Secured Networks

IPsec: IPsec (Internet Protocol Security) is a developing standard for
security at the network or packet processing layer of network
communication. Earlier security approaches have inserted security at the
application layer. IPsec is especially useful for implementing virtual private
networks and for remote user access through dial-up connection to private
networks.

IPsec provides two choices of security services: Authentication Header
(AH), which essentially allows authentication of the sender of data, and
Encapsulating Security Payload (ESP), which supports both authentication
of the sender and encryption of data. The specific information associated
with each of these services is inserted into the packet in a header that follows
the IP packet header. Separate key protocols can be selected, such as the
ISAKMP/Oakley protocol.

SSL / TLS: The Secure Sockets Layer (SSL) is a commonly used
protocol for managing the security of a message transmission over the
Internet. SSL has recently been succeeded by Transport Layer Security
(TLS), which is based on SSL. SSL uses a program layer located between
the Internet's Hypertext Transfer Protocol (HTTP) and Transport Control
Protocol (TCP) layers. Developed by Netscape, SSL also gained the support
of Microsoft and other providers and became the de facto standard until
evolving into Transport Layer Security. SSL uses the public-and-private key
encryption system from RSA, which also includes the use of a digital
certificate.

TLS and SSL are an integral part of most Web browsers and Web
servers. If a Web site is on a server that supports SSL, SSL can be enabled
and specific Web pages can be identified as requiring SSL access. However,

Managing Composite Web Services 223

TLS and SSL are not interoperable. A message sent with TLS can be
handled by a client that handles SSL but not vice versa.

VPN: A virtual private network (VPN) is a private data network that
makes use of the public telecommunication infrastructure, maintaining
privacy through the use of a tunneling protocol such as IPsec or SSL/TLS
and additional security procedures. The initial idea of VPN was to give
companies networking capabilities at much lower cost by using the shared
public infrastructure rather than a private network. In another embodiment,
VPN are used to separate intra-organization networks from the open
Internet. Authorized users can externally access intra-networks through
special gateways from the public Internet. In the space of Web services, this
idea evolved into providing collaborating partners an efficient and secure
platform for business-to-business interactions.

3.3.2 Digital Signatures

A digital signature (not to be confused with a digital certificate) is an
electronic signature that can be used to authenticate the identity of the sender
of a message or the signer of a document, and possibly to ensure that the
original content of the message or document that has been sent is unchanged.
Digital signatures are easily transportable, cannot be imitated by someone
else, and can be automatically time-stamped. The possession of a signed
message implies that a sender cannot easily repudiate it later.

A digital signature can be used with any kind of message, whether it is
encrypted or not, so that the receiver can be sure of the sender's identity and
that the message arrived unaltered. A digital certificate contains the digital
signature of the certificate-issuing authority so that anyone can verify that
the certificate is authentic.

DSS: The Digital Signature Standard (DSS) is the digital signature
algorithm (DSA) developed by the U.S. National Security Agency (NSA) to
generate a digital signature for the authentication of electronic documents.
DSS was put forth by the National Institute of Standards and Technology
(NIST) in 1994, and has become the United States government standard for
authentication of electronic documents. DSA is a pair of large numbers that
are computed according to the specified algorithm within parameters that
enable the authentication of the signatory, and as a consequence, the
integrity of the data attached. Digital signatures are generated through DSA,
as well as verified. Signatures are generated in conjunction with the use of a
private key; verification takes place in reference to a corresponding public
key. Each signatory has his or her own-paired public (assumed to be known
to the general public) and private (known only to the user) keys. Because an

224 Chapter 8

authorized individual using his or her private key can only generate a
signature, the corresponding public key can be used by anyone to verify the
signature.

MD5: Message Digest 5 (MD5) is another widely used digital signature
algorithm to verify data integrity through the creation of a 128-bit message
digest from data input (which may be a message of any length) that is
claimed to be as unique to that specific data as a fingerprint is to a specific
individual. MD5 is intended for use with digital signature applications,
which require that large files must be compressed by a secure method before
being encrypted with a secret key under a public key cryptosystem.

3.3.3 Digital Certificates

A digital certificate is an electronic "access card" that establishes
credentials when doing business or other transactions. It is issued by a
certification authority (CA). It contains an individual's name, a serial
number, expiration dates, a copy of the certificate holder's public key (used
for encrypting messages and digital signatures), and the digital signature of
the certificate-issuing authority so that a recipient can verify that the
certificate is real. Some digital certificates conform to a standard, X.509.
Digital certificates can be kept in registries so that authenticating users can
look up other users' public keys.

3.3.4 Secure Authentication and Certification

S/PKI: The (Simple) Public Key Infrastructure (S/PKI) provides a means
for relying parties (i.e., recipients of certificates who act in reliance on
digital signatures verified using those certificates) to know that another
individual's public key actually belongs to that individual. Certification
Authorities (CA) are those entities that initially authenticate the public key
subscriber and issue the certificate for use by the relying parties.
Independent verification that a certification authority operates using industry
accepted standards for key management and trust relationships among CA.

A Public Key Infrastructure enables users of an insecure public network
such as the Internet to securely and privately exchange data using public key
cryptography. A PKI offers an integral solution that handles all security
issues related to online data transmission. It enables the sending of
information in a safe and private way. Later on, we will take a closer look at
public key cryptography.

Managing Composite Web Services 225

A PKI offers three primary services:

Authentication - The assurance that someone really is who he
claims to be.

Confidentiality - The assurance that no one but the intended
recipient can access the data.

Integrity - The assurance that data has not been altered while in
transportation. It ensures that the message received is the same
message that was sent.

A public key infrastructure consists of:

A certificate authority (CA) that issues and verifies digital
certificate. A certificate includes the public key or information
about the public key.

- A registration authority (RA) that acts as the verifier for the CA
before a digital certificate is issued to a requestor.

Directories where the certificates (with public keys) are held.

A certificate management system.

CoSectof
AuthenHcation

^PML

^:w\—

Auti€iitlOdtbn

System i r ^

Figure 79: The SAML domain model.

A PKI is built on trust and at the core of this trust is the certification
authority (CA). The CA issues digital certificates on which a verified
identity is bound to a public key that is trusted by all parties involved. The
public key infrastructure assumes the use of public key cryptography, which

226 Chapters

is the most common method on the Internet for authenticating a message
sender or encrypting a message. For all these reasons, the foundation of Web
services and e-commerce has to be built on strong security technology
enabling trust and full legal recognition as the key business success factors
for electronic commerce applications over the Internet.

The current SAML 1.0 Specification Set (29-Mar-2002) [x] consists of
following documents: Assertion Schema, Protocol Schema, Bindings and
Profiles, Security and Privacy Considerations, Conformance Program
Specification, and a Glossary.

One major design goal for SAML is Single Sign-On (SSO), the ability of
a user to authenticate in one domain and use resources in other domains
without re-authenticating. However, SAML can be used in various
configurations to support additional scenarios as well. Several profiles of
SAML are currently being defined that support different styles of Single
Sign-On and the securing of SOAP pay loads. The assertion and protocol
data formats are defined in the SAML specification.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>

<SOAP-SEC:Signature

xmi n s : s OAP - s EC=" http://schemas.xmlsoap.org/soap/security/2000-12 "
SOAP-ENV:actor="some-URI"
SOAP-ENV:mustUnderstand="l">
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#":

<ds:Signedinfo>

<ds:CanonicalizationMethod

Algorithm="http://www.w3.orgrrR/2000/CR-xml-c14n-20001026">
< /ds :Canon ica l i za t ionMethod>
<ds: s ignatureMethod Algorithm="http://www.w3.org/20/09/xmldsig/dsa-hal"/>
<ds :Reference URI="#Body">

<ds:Transforms>
<ds; Trans form AlgorJthm="http://www.w3.org/TR/2000/CR-xml-c14n-26" />

</ds :Transforms>

<ds : DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>

< /ds :Refe rence>
< /ds :S ignedIn fo>
<ds:SignatureValue>MCOCFFrVLtRlk=...</ds:SignatureValue>

</ds:Signature>

</SOAP-SEC:Signature>

</SOAP-ENV:Header>

</SOAP-ENV:Envelope>

Figure 80: Fragment of a digitally signed SOAP header document.

Managing Composite Web Services 227

3.3.5 WS-Security

WS-Security provides enhancements to SOAP messaging by providing
message integrity, message confidentiality and single message
authentication. WS-Security is being developed to work with a variety of
security paradigms, namely Kerberos, PKI and SSL.

WS-Security provides support for secure token transfer, message
integrity, and message confidentiality. These mechanisms can be
individually used or in conjunction with each other. The <Security> header
block in the message will provide security specific information to a
Receiver. There may be multiple header blocks destined for multiple
Receivers. The <Security> header block contains information about the
encryption and signing steps that the Sender went through. The Security
header element may include Usemame password tokens. A
BinarySecurityToken may also be included. A BinarySecurityToken has an
encodingType (say Base64Binary) and a valueType that indicates what the
Security Token is (say a Kerberos Ticket). Binary Security Token may also
contain X.509 certificates.

<S: Envelope>

<S: Header>

<Security S:actor='' ../' S: mustUnderstand=". . ">

</Security>

Figure 81: WS-Security document.

The WS-Security specification builds on XML-Signature specification.
The <Security> header block is used to carry a signature compliant with the
XML Signature specification within a SOAP Envelope for the purpose of
signing one or more elements in the SOAP Envelope. Multiple signature
entries may be added into a single SOAP Envelope within the <Security>
header block. Senders should take care to sign all important elements of the
message, but care must be taken in creating a policy that will not to sign
parts of the message that might legitimately be altered in transit.

228 Chapter 8

SERVICE LEVEL AGREEMENTS

If dynamic composition of Web services were to become a reality, a
number of fundamental issues need to be addressed beyond agreement on
document exchange formats. Some of these issues are (a) how will Web
services agree on what will be executed by each of the participants? (b) How
will Web services agree upon how well (performance, quality, etc) each of
them will execute? (c) Who will be responsible for the overall execution or
completion? (d) Who will be responsible if there is a failure in the overall
execution or completion? (e) How will Web services trust each other?
Service level agreements are the corner stone for addressing these issues in
Web services. A service level agreement is an agreement between two Web
services regarding the guarantees that one of the Web services (provider)
offers to the other (consumer). The guarantees are about what transactions
need to be executed and how well they should be executed. SLA help divide
the responsibilities and risks among Web services.

Figure 82: Service Level Agreement between two services.

In a real-world scenario each Web service interacts with many other Web
services, switching between the roles of being a provider in some
interactions and consumer in others. Each of these interactions could
potentially be governed by an SLA. Considering the number of interactions
that a Web service typically executes for completing one transaction, and the
number of transactions that are executed within a day, the job of manually
keeping track of which SLA are violated, why they are violated, and how
many times they are violated becomes an overwhelming task. Further,
considering the legal and monetary implications in violating SLA, it is in the
best interest of a Web service to predict and correct violations before they
occur. On the other hand, if there is too much leeway in the specification of
SLA, a Web service may not be able to fully capitalize on its capabilities.

Web services SLA management refers to automatic monitoring,
enforcement, and optimization of SLA between Web services. One of the
enablers for automated SLA management is a flexible but precise
formalization of what an SLA is. The flexibility is needed since we neither
can completely understand nor can anticipate all possible SLA for all the

Managing Composite Web Services 229

different types of Web service providers. This will also help create a generic
SLA management system for managing a range of different SLA.

The precision is essential so that an SLA management system can
unambiguously interpret, monitor, enforce, and optimize SLA.

4.1 Specification of Service Level Agreements

4.1.1 Introduction to SLA

An SLA is typically signed between two parties, which have the role of
provider and consumer respectively. A typical SLA [Sturm 2000] includes
the following components:

- Purpose - describing the reasons behind the creation of the SLA

- Parties - describes the parties involved in the SLA and their
respective roles.

Validity Period- defines the period of time that the SLA will cover.
This is delimited by start time and end time of the term.

- Scope - defines the services covered in the agreement.

- Restrictions - defines the necessary steps to be taken in order for the
requested service levels to be provided.

Service-level objectives - are the levels of service that both the users
and the service providers agree on, and usually include a set of
service level indicators, like availability, performance and reliability.
Each aspect of the service level, such as availability, will have a
target level to achieve. Service Level objectives have day-time
constraints associated with them, which delineate their validity.

- Service-level indicators - means by which these levels are measured.
Service Level Indicators (SLl) are the base level indicators.

- Penalties - spells out what happens in case the service provider
under-performs and is unable to meet the objectives in the SLA. If
the agreement is with an external service provider, the option of
terminating the contract should be built in.

Optional services - provides services that are not normally required
by the user, but might be required as exception.

- Exclusions - specifies what is not covered in the SLA.

- Administration - describes the processes created in the SLA to meet
and measure its objectives and defines organizational responsibility
for overseeing each of those processes

230 Chapter 8

SLA specification has been researched earlier. Quality management
Language (QML) [Frolund 1998] has been proposed for specifying Quality
of Service for applications. In QML contracts are instances of contract types.
A contract type defines the structure of its instances. In general a contract
contains a list of constraints. A constraint consists of a name, an operator
and a value. The name refers to a dimension and can also refer to a
dimension aspect. A dimension aspect can be a percentile, mean, variance,
and frequency. Usually SLA have validity periods (start and end dates) and
have SLO that in turn have daytime constraints (e.g. an SLO may be valid
only from Mon-Wed, between 6:00 PM-8:00 PM). It is quite essential to
capture this kind of information in the contracts. This kind of information is
however not captured in QML. In addition there should be a possibility of
specifying a wide range of mathematical operations on the measured data.
An example would be to guarantee response time of 5 longest running
transactions in last 24 hours < 25ms. As it does not fall in the allowed
dimension aspects it would not be possible to capture this in QML.

Bhoj et al. [Bhoj 98] describe a contract to be defined by a triple
(P,M,A), where P is a set of properties, A is the set of assertions and M is the
set of methods available on the contract. An assertion is an atomic group of
statements agreed upon between the parties agreeing to the contract.
Statements in an assertion are made up of logical predicates whose values
can be uniquely determined. The logical predicates are composed using
variables as well as logical operators, quantifiers, set operations and
constraints on these variables. An example assertion may be response time <
25 ms. We believe however, that assertions have to be unambiguously
specified, and the Web services being autonomous should not need human
intervention to understand the meaning of SLA, and to monitor and measure
their compliance. Also the Web services will sign numerous SLA with
multiple parties over time and the SLA management process should be
automated as much as possible. An assertion as mentioned above is quite
ambiguous. This could mean an instance response time or average response
time. Again if it is average response time that is being referred to, is it
averaged over every 5 minutes, an hour or 24 hours? It is also necessary to
indicate when the averages are calculated. Is it at 6PM everyday?

The assertions thus have to be quite unambiguous. Also the assertions
have to be captured in such a way that their meaning is clear to Web services
software that handle them, even if they are implicitly understood by humans.
It is also necessary to identify components in assertions that are common
across SLA so that base modules can be identified and SLA management
can be automated.

Managing Composite Web Services 231

4.1.2 Rethinking SLA Specifications

4.1.2.1 Precision

To understand the notion of precision in SLA, consider the following
example. Imagine a Web service for ordering supplies on the Internet.
Assume that "order-supplies" is an operation supported by this Web service.
In order to execute this operation, a client should send a '"purchase-order"
document and should obtain a "confirmation" document in response. Now,
consider the following guarantee by the supplier: 95% of the time, the time
for executing "order-supplies" will be less than 20 seconds.

While this may seem like a reasonable specification that can be
automatically managed on the first look, there are several ways to interpret
this:

When? When should a Web service check for the compliance of this
SLA? Here are some examples when the evaluation of this SLA can be
triggered: (i) whenever a new "order-supplies" execution is completed, (ii)
after every 10 "order-supplies" executions, (iii) at the end of the day, or (iv)
just before the termination of the SLA. It is trivial to note that if this
guarantee holds true in one of these cases, it does not necessarily hold in the
rest.

Which? Which inputs should be considered in evaluating the SLA? In
order to check whether the above guarantee is upheld or not, one can
consider (i) all executions of "order-supplies" since the formation of the
SLA, (ii) all executions of "order-supplies" since the beginning of that day,
(iii) all executions of "order-supplies" no matter who the client is, (iv) all
executions of "order-supplies" initiated by the client with which the SLA is
created, or (v) the last 100 executions of "order-supplies", no matter when
they happened.

Where? Where is the timing of the execution monitored? It can either be
monitored at the client issuing the request or at the service provider handling
the request. Usually, clients are interested in SLA that give guarantees from
their perspective as opposed to the service provider's perspective. On the
other hand, it is quite hard for the service provider to make client-side
guarantees since that could be influenced by factors that are outside the
control of the service provider (e.g., the documents between the client and
service provider often flow through other service providers such as ISPs).

What and How? In the above example, the metric of interest is the
response time from the when the purchase-order is sent out to when a
confirmation is received. The guarantee is on the 95̂ ^ percentile. One way to
interpret this is that out of every 100 executions, 95 will have a response
time of less than 20 s. Another way to interpret this is that 95 out of every

232 Chapter 8

100 executions will have a mean response time of less than 20 s. Metrics that
are not as well defined like availability, reliability, cost, and quality will
further complicate how an SLA should be evaluated.

For a system to automate the management of SLA, all of the above
ambiguities should be removed from the SLA specification.

4.1.2.2 Flexibility

There are many kinds of interactions between consumers and providers
of Web services - single request-reply interaction, multiple back-and-forth
messages, short-lived interactions, or interactions that last for several hours
or days. Web services themselves are quite diverse. The metrics that are of
interest in an SLA are, many times, quite specific to the Web service. For
example, a bookseller would like to provide a guarantee on the number of
days it takes to deliver a book. A credit card authorization service provider
would like to provide a guarantee on the security of the transmitted
information. The vast diversity in the kinds of interactions as well as metrics
that are of interest necessitates the need for a flexible SLA formalization.
One should be able to build an automated SLA management system (or at
least a framework for SLA management) using the flexible formalization.

Emerging standards such as Web services Definition Language (WSDL)
and Web service Flow Language (WSFL) are creating flexible and generic
interaction models for Web services. For example, WSDL introduces
concepts such as messages, operations, ports, and end points - which are
useful for describing the operations of any Web service. Similarly, WSFL
introduces the notion of activities and flows - which are useful for
describing both local business process flows and global flow of messages
between multiple Web services. So, one way to create a flexible SLA
formalization is to build upon these concepts. In other words, one can create
a flexible SLA formalization by associating "quality metrics" to the
formalizations that are already defined in WSDL and WSFL.

Here are some examples that show how such association can be done.

- Response time of a Web service operation.

- Response time of a flow.

Security of an operation.

- Number of times an activity is executed in a flow.

- Cost of executing an operation.

- Availability of an end point.

Managing Composite Web Services 233

Metrics

Availability

Response

Throughput

Security

Payment Rate

Problem
Response

Problem
Circumvention
or Resolution
Time

Repeat
Trouble Rate

Account set up
time

Definition

Availability of an entity
minus the impact time
from any events other
than loss of network or
system availability
The time taken for an

client request and
return a response

Number in unit of time

The security at different
levels need to be agreed
upon in the SLA

Rate at which the
service/transactions are
charged

The time required for a
client to receive a
response after reporting
a problem

The time required for a
client to receive a
circumvention or a
solution after reporting
a problem

Number of times the
trouble is repeated
before it is escalated.

Time taken to create
and set up new
accounts.

Applicable for Web
service constructs

Port,
Port Type,
ServiceProvider,
Endpoint,
Flow.
Operation,
Activity,
Flow.

Operation, Activity, Flow,
Endpoint, Port.

Service Provider, Port,
Operations, Activity,
Flow, Endpoint.

Operations, Activity, Port,
Service Provider,
Endpoint, Flow.

Service Provider,
Port,
Endpoint.

Service Provider,
Port,
EndPoint.

Service Provider,
Port,
Endpoint.

Service Provider,
EndPoint, Port.

Target specification

Expressed as percentage
or in time

normally specified as
service to complete X%
of transactions of type Y
to be completed within Z
seconds |
Expressed as tps

Level supported
High
Medium
None 1
The payment rate can be
subscription based or can
be expressed per
transaction type or
instance level. |
1-High Priority[md]
2-Medium Priority[md]
3-Low Priority [md]
(all in target time)

Expressed as times for
various categories of
problems. High category
problems must be
resolved faster.

This is usually expressed
as a rate

Expressed as unit of time

Figure 83: Web services problem resolving.

Here are some examples that show how such association can be done.

Response time of a Web service operation.

- Response time of a flow.

Security of an operation.

- Number of times an activity is executed in a flow.

234 Chapter 8

- Cost of executing an operation.
- Availability of an end point.

Another way to guarantee flexibility is to identify generic components in
typical SLA specifications, which in turn are extensible so that new
components can be defined by extending these base components

4.1.3 SLA Specification languages

4.1.3.1 WSML
An SLA typically has a date constraint (start date, end date, nextevaldate)

and a set of Service Level Objective (SLO). An SLO in turn has typically a
day-time (Mo-We, 6:00PM-8:00 PM) constraint and a set of clauses that
make up the SLO. A clause is based on measured data. This is referred to as
a measuredltem. A measuredltem can contain one or more items. A
measuredAt element relates to the "where" part of the specification,
referring to the side the measurements are taken (provider or consumer). A
clause evaluation is done either when an event happens, e.g. say a message
arrives, an operation completes or at a fixed time, say at 6PM. We call this
an evalWhen component. This refers to the "When" component of the
specification. Once the evalWhen trigger arrives, a set of samples of
measuredltem are obtained applying a sampling function. The evalOn
component determines the set of samples over which a condition is applied.
The sample set is a constrained set of measured data that is obtained by
applying the evalOn component. Examples of evalOn components may be a
number or a time period, e.g. the 5 longest running transactions, or all the
samples for last 24 hours.

SLA = Dateconstraint Parties SLO*

Dateconstraint = Startdate Enddate Nextevaldate

SLO = Daytimeconstraint Clause*

Dateconstraint = Day* Time*

Clause =

Measuredltem EvalWhen EvalOn EvalFunc EvalAction

Measuredltem = Item*

11 em =

MeasuredAt ConstructType ConstructRef

Figure 84: Example SLA.

Managing Composite Web Services 235

The evalOn component refers to the "which" part of the specification. A
condition is thereafter applied on the sample set so obtained. This
component is the actual evalFunc which is applied on the sample set so
obtained from the evalOn component. An example of evalFunc would be
average response time function < 5 ms. The evalFunc must be a
mathematical function that is expressible in terms of its inputs and logic. The
evalFunc refers to the "What" and "How" part of the specification. A sample
clause like At 6 PM the Average response time for the 5 longest running
book buy transactions measured on the client side should be < 5 ms can be
broken in measuredltem (itemibookbuy transaction measuredAtxonsumer),
evalWhen(at 6PM), evalOn function(set of 5 longest running transactions)
and the evalFunc (average response time < 5 ms). The evalAction could be
notification to the administrator in this case.

4.1.3.2 WSLA

IBM proposed the WSLA specification for specifying Service Level
Agreement between Web services (WSLA). WSLA Agreement is specified
in addition to the WSDL specification of the Web services.

An SLA in the WSLA language contains three sections: a section
describing the parties, a section containing one or more service definitions
and the section defining the parties obligation.

The parties involved in a WSLA agreement is always be between two
signatory parties, and possibly supporting parties. The supporting parties
cannot be held liable for the SLA. A service definition contains one or more
service objects. The service definition is for common understanding between
the signatory parties of the metric involved. There can be one or more
SLAParameters in a service object. SLAParameters define the properties
relevant for defining guarantees. The SLAParameter is related to a metric
and specifies how it is measured and aggregated. Metrics can be composed
out of other metrics. Measurement directives define how parameters are
measured by the organization that makes the metrics available. A Function
specifies how to compute a metric in terms of other metrics and constants.
The obligations that bind parties are of two types: A service level objective
and action guarantees. Every obligation has an obliged party. Service
providers are obligated for the Service Level Agreements.

236 Chapter 8

J • i-

J L

ServiceOefinHion

t
Obligations

SupportingPanies
SignatoryParties

Party

.^ t

ServiceObiect ServiceLevelObjective ActionGuarantee

!___

MeasurementOirective

3_.. f __
Function

Figure 85: Basic constructs of the Web service Level Agreement (WSLA) language.

4.1.3.3 WS-Agreement

The WS-Agreement is signed between an agreement producer and an
agreement initiator (also known as a customer). The agreement captures the
expected service behavior in potentially domain-specific agreement terms.

The Agreement term must define unambiguously what is necessary to
satisfy an agreement. WS-Agreement extends another standard called WS-
Policy. The WS-Agreement model uses service creation as the negotiation
primitive for providing an AgreementFactory interface to agreement
providers, inheriting from the FactoryPortType. To support more complex
negotiations, WS-Agreement allows agreements to be linked by extensible
relationships. An Agreement has two states: satisfied (all its terms have
been or being met) or violated (when at least some of its terms are not being
met). A special form of satisfaction is the completion.

Managing Composite Web Services 237

The Agreemeiitlnitiator obtains a handle to the AgreementFactory and
negotiates the terms with it. Once the negotiation phase is complete
Agreements are created. These Agreements can be monitored by the
Agreementlnitiator. The consumer uses the application service whose
behavior must conform to the Agreements signed between the Initiator and
the provider.

<xsd: complexType name=''AgreementType">
<xsd:complexContent>

<xsd:extension base='Vsp:PolicyExpression">
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="agremeent" type="AgreementType" />

<xsd:complexType name="TermType" abstract="true'' >
<xsd:attributeGroup

ref="wsp:CompositorAndAssertionAttributes" />
<xsd: attribute name="Name" type=''xsd:NCName" />
<xsd:attribute name="Negotiability"

type="gsa:NegotiabilityType'V>
</xsd:complexType>

<xsd:simpleType name="NegotiabilityType">
<xsd:restriction base="xsd:QName">

<xsd:enumeration value="gsa:Fixed"/>
<xsd:enumeration value="gsa:Negotiable"/>

</xsd:restriction>
</xsd:simpleType>

Figure 86: WS Agreement.

The WS-Agreement model defines two essential portTypes: the gsa:
Agreement service and the gsaiAgreementFactory service. An agreement
initator is a client of the gsaiAgreementFactory who negotiates by invoking
the createService operation with appropriate argument content. The service
that is created can have a pre-set termination time. Agreements have their
lifetime and can be monitored. Agreements may be composed into further
composite Agreements. The Agreement port type has certain service data
elements too. The following concepts are captured as the service data

238 Chapter 8

elements for the Agreement portType.Creation parameters, Agreement
terms, Agreement status.

Agreement

Initiator

Consumer

^
^

^ ^

^ ^

1 A. arf^f^mf^nf T^rr\\/\Af^r

^
I P

I m ^ l W W I I t W l l t ^ X l V ^ T l V * W t

AgreementFactory

Operations:
SDEs:
Term Language

Term Ranges WW
H Agreement I

^ f

1 A ^
1

n ApF)lication

Service

\
i

(
Agreement 11

.̂ • 4

4 ^

<->

/
/

>

Figure 87: Agreement protocol provider.

SLA MONITORING

As minimal human intervention is desirable in Web services it is
necessary to create monitoring engine that can take care of a variety of
specifications and monitor the necessary management data. The SLA
formalizations described above could be used to drive SLA monitoring
engines.

To simplify the discussion, we will describe the details of the engine as if
it manages a single SLA between two services. Such an engine has then two
components - one on the service provider side and one on the service
consumer side. Extending our notion to a large number of SLA requires that
the engine keep track of the state of multiple SLA simultaneously, and be

Managing Composite Web Services 239

able to relate each measurement to one or more affected SLA. Extending our
notion of two services to a large number of interacting services requires the
engine's components to take the dual role of acting as both "service
providers" in some SLA and as "service consumers" in some SLA.

5.1.1 SLM Engine

The SLM Process Controller that is part of the SLM engine has to
execute the management processes for the SLM engine. These management
processes are distinct from the business processes that are executed in the
Web services infrastructure as discussed in chapter 2. These management
process flows are created and managed for a variety of purpose. These flows
may also be defined in WSFL and may expose their own management
interfaces to other SLM engines of partner services. These engines can
initiate management related conversation with each other. The process
controller executes the SLA monitoring process flow for undertaking SLA
evaluation and reporting. The SLA descriptions then can be used to trigger
evaluations of SLO based on time or an event happening [Sahai 2003]

5.1.2 Service Level Monitoring Process Flow

The Service Level Monitoring process consists of the following steps:

L The process (SLM process) is initiated as soon as an SLA is
received as input.

2. Decide where the measurements are to be carried out. This is
marked on every service level indicator in the SLA.

3. Decide where the evaluation of the SLA is to be done. The SLA
evaluation is carried out at the customer side, if the SLA has
items that are all measured at the customer side. Similarly, if all
the measured items are measured at the provider side, the SLA
evaluation is carried out at the provider side. At the end of
evaluation the SLM engines exchange violation report through
SLA Violation Report Exchange protocol.

If however, some of the items are measured at the customer side, and
some of them are measured at the provider side, then the evaluation has to be
carried out at the provider side. This last case, however, requires that the
customer-side measurements are transferred to the provider-side.

240 Chapter 8

PartSupplier

[ChipSupply]

PCMaker
Assembly Dept.

[Assembly]

Delivery
Provider
[Delivery]

PCMaker
Sales Dept

[PCSupply]

PaymentProvider

[PaymentService]

Figure 88: A web service scenario with multiple partners involved

When the evaluation of an SLA depends on measurements from both, the
customer-side and provider-side, a measurement protocol is needed for
transferring the measurements from the former to the latter.

<sla>
<slald>2</slalci>
<partnerName>PcBuyerl.com</partnerName>
<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
<endDate>Mon Jul 15 00:00:00 PDT 2002</enclDate>
"<slo>

<sloId>l</sloId>
<dayTimeConstraint>Mo-Fr: 9-17</dayTimeGonstraint>
<measuredltem>
<item>
<constructType>process</constructType>
<constructRef>PcMaker.com/Invoice</constructRef>
<measuredAt>PcMaker.com</measuredAt>
</item>

</measuredItem>
<evalWhen>6PM</evalWhen>
<evalOn>all</evalOn>

<evalFunc name ="averageResponseTime" operatior -W Threshold ="6"
unit =''hours"></evalFunc>

</slo>
</sla>

Figure 89: Example SLA.

Managing Composite Web Services 241

Such a protocol should be designed with the following objectives in
mind: (a) minimize the amount of data that is transmitted between the two
sides, and (b) transfer the data in time for the evaluation of SLA to take
place when triggered.

To fulfill these two objectives, the SLA monitoring engines on both sides
should agree on (a) what measurements need to be transferred and at what
level of aggregation (b) how frequently they should be transferred, and (c)
the type and level of aggregation of the measurements. To specify the level
of aggregation, typical sampling functions such as count (t), totaled,
averaged, movingAvg(lastN), minN, maxN, threshold may be used. In the
case when the sampling function cannot be determined all the measurements
from the customer-side must be shipped to the provider-side. The reporting
frequency depends on the SLA.

<sla>
<slald>l</slald>
<partnerName>PCBuyer.coin</partnerName>
<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
<slo><sloId>l</sloId >
<dayTimeConstraint>We-Thu: 12-17</dayTimeConstraint>
<measuredltem>
<item>
<constructType>process</constructType>
<constructRef>PCMaker.com/PCDe1ivery</construetRef>
<measuredAt>PCMaker.com</measuredAt>
</item>
</measuredItem>
<evalWhen>6PM</evalWhen>
<evalOn>all</evalOn>

<evalFunc name="averageResponseTime"operator="LT" threshold = "6"
unit="hours"></evalFunc>

</slo>
</sla>

Figure 90: Example SLA

Any web service interaction would involve at least two and often more
web services. Here's an example scenario with SLA written in WSML.

The example scenario as shown in Figure 88 has two SLA between
PCMaker.com and its customers namely PCBuyerl.com, PCBuyer2.com.
The two SLA were namely SLAl and SLA2. Each SLA has a single Service
Level Objective. The first SLA is with PCBuyerl.com. It guarantees that

242 Chapter 8

between the dates of 0.2/15/02 and 07/15/02 all the invoice processes from
9-5 and on weekdays will be undertaken in 6 hours. The evaluation is done
every day at 6 PM.

The second SLA is signed between PCMaker.com and PCBuyer2.com. It
guarantees that between the dates of 0.2/15/02 and 07/15/02 all the PC
Delivery processes from 9-5 and on weekdays will be done on an average
within 6 hours. The evaluation of the SLA will be done every day at 6 PM.

The SLM engines corresponding to PCMaker.com and PCBuyerl.com
have to determine where the evaluations of the SLO take place and at what
intervals they share management information.

SUMMARY

In order to realize the vision of Web services enabling inter-enterprise
integration it is important to not only standardize on set of technologies but
also to ensure that these interactions can be monitored and managed. In this
chapter we looked at the requirements and the technologies that are available
to enable and manage Web service to Web service interactions. We also
discussed some standards that are important to enable web service to web
service interactions like WS-Security, WS-Reliability and SLA standards
and efforts!

Chapter 9

MANAGEMENT USING WEB SERVICES

1. INTRODUCTION

Management technologies have developed at various layers in the
management stack, often to address parts of the pieces of the big
management puzzle. These management solutions have been introduced by
vendors over the course of time and have not been made interacting with
each other. Often the data models, the APIs, their interactions are not
compatible with each other.

Efforts are being made to remedy this situation. Web services have been
thought of as the unifying technology that may enable uniformization of
these interfaces, and interactions between management solutions. Efforts are
being made to go one step further to represent managed systems themselves
as Web services. Some of the utility computing vendors and the grid
community are trying to do exactly that.

2. UNIFORM REPRESENTATION THROUGH WEB
SERVICES

Virtualization is a set of transformation processes in the virtualization
layer during which associations between virtualized entities and
"underlyings" are established and changed (we use the term underlyings to

243

244 Chapter 9

denote any resources represented by the virtualization entities—these
resources can be physical or logical, grouped or otherwise constructed). For
clients 'above' the virtualization layer, a created virtualized entity exposes
its own 'virtual' identity, properties and behavior, while attributes belonging
to underlyings remain hidden from the client.

The virtualization layer internally maintains the associations between
virtualized entities and related underlyings, often also referred to as the
"indirection" to underlyings. Knowledge of these associations allows
"seeing" through the virtualization layer and being able to correlate
virtualized entities with corresponding underlyings.

Any IT resource or group of IT resources can be a virtualized entity.
Examples of virtualized entities include virtual memory providing
application processes with the impression of using larger memory than
actually available in a machine. Virtual disks of RAID arrays provide the
impression of faster and more reliable disks than physical disk devices.
Entire virtual machines can be created providing the impression that
applications operate on individual machines. Network virtualization allows
to fully decouple sub-networks used by different applications from one
another by providing individual (IP) address spaces and DNS name spaces.

The Utility Data Center virtualizes storage in form of programmatically
attachable disks to machines and networks in form of programmatically
connecting selected machines by individual subnets. Virtualization points in
the UDC internally are switches for Storage Area Networks (SAN) and
Virtual Local Area Network (VLAN). The UDC externally exposes a control
interface through which these control points are programmable in a higher-
level specification language for resource environments.

Resource virtualization is used for several reasons:

insufficient resources - when underlyings are scarce (e.g. virtual
memory, processes as virtual processors, etc.),

- sharing - when underlyings need to be shared and using entities
should not or cannot be aware of sharing and coordinate
accordingly. The virtualization layer then coordinates sharing
transparently for virtualized resources (e.g. separate address spaces
in operating systems, virtual networks, virtual machines),

- new properties - when new properties and behavior of underlyings
are desired (e.g. RAID creating disks with better performance and
reliability characteristics),

- transparent failover - when underlyings fail, the virtualization
layer can replace failed parts without exposing applications to the
failures.

Management Using Web Services 245

Similar reasons apply to services virtualizing applications to users and other
using entities.

Virtualization in general may have several effects:

- multiplication - more quantity of an underlying can be created,

independence - virtualized entities exist widely independently of
one another, the virtualization layer takes care of necessary
coordination when underlyings are shared,

- isolation - virtualized entities are isolated and not aware of one
another and of underlyings,

- protection - virtualized entities are protected, no virtualized entity
can reach into another virtualized entity,

- decoupling - virtualized entities are decoupled from underlyings
allowing the virtualization layer to change these associations
without being noticed by underlyings or virtualized entities,

- encapsulation - the virtualization layer encapsulates underlyings
and centrally coordinates sharing (in time or space) of underlyings
for created virtualized entities,

- hiding - underlyings and associations with underlyings are hidden
in the virtualization layer and can hence be changed or moved
without being noticed from outside. The hiding effect poses a
barrier for management systems since it prevents correlating virtual
with physical entities (see Section 4 on difficulties of management
in virtualized environments).

- layering - virtualization separates the layer of underlyings
("physical") from the layer of virtualized entities (layers can be
recursive).

3. ROLE OF MANAGEMENT SYSTEM IN
VIRTUALIZED ENVIRONMENT

System management is generally understood as the process of
maintaining a system in an operational state, and improving and evolving
that state towards an objective. One can subdivide operational management
in three typical stages:

- assess: data gathering, processing, reporting, presenting, archiving

- advise: reasoning about monitored data, drawing conclusions

- act: issuing control instructions back to managed elements.

246 Chapter 9

A management system consists, on the monitoring side, of probes that
monitor assigned managed elements and report to management servers that
collect, process, present and archive monitored information. On the actuation
side, a management system includes control interfaces of managed elements
through which control instructions are issued to managed elements.

From the above definition of management, it becomes clear that
virtualization overlaps in some of its tasks with a management system, since
the virtualization layer must be aware of the resources available, and
changes their state over time. As a consequence, one could imagine
virtualization layers relying on management technologies to provide the
necessary resource data. In addition, the use of virtualization techniques
implies the existence of some kind of 'management system' that translates
customer requests into actions within the virtualization layer. Any actions
that a management system would like to issue need to be coordinated with
the management system that is associated with the virtualization layer.

The above reasoning suggests that management and virtualization are
difficult to separate, and may better be dealt with in concert. We argue even
further, that a virtualization layer should be looked at as 'just another'
management system, one of many possible such systems, each with assess,
advice and act capabilities. Together, these management systems form
interacting control systems. The remaining questions we address here are:
what are the properties of these interacting control systems and how do
legacy management systems fit in such future architectures. First, we discuss
legacy management systems, and then we address a generalized interface for
virtualization layers.

4. ASSUMPTIONS IN LEGACY MANAGEMENT
SYSTEMS CHALLENGED BY
VIRTUALIZATION

Specifically the hiding effect of the virtualization layer causes problems
in management systems since underlyings are not exposed to the
management system, and it is hard to track (changing) associations with
underlyings. But there are other aspects that fundamentally change some of
the assumptions that have been built into management systems.

These assumptions are:

Shared network assumption. Management system and managed system
use the same, shared network infrastructure.

Management Using Web Services 247

Identification of managed elements and management elements (probes,
OV spy's, management servers, agents, etc.) is based on domain-wide
unique (IP) addresses or hostnames in the underlying shared network.

Managed elements can be reached form the management system from
anywhere in the network using known, fixed addresses.

Topology information is obtained (eventually discovered) and modeled
in terms of the underlying shared, and rather constant network infrastructure.

In virtualized networks, sub-networks are independent from one another.
Since they may have own policies for identification, naming and addressing
(based on own IP and DNS address spaces), global identification does not
apply per se. Translations between identification, name and address spaces
may be necessary.

Managed elements residing in separate virtualized sub-networks cannot
easily be reached from other sub-networks. Their addresses eventually must
be translated giving them different outer and inner identities, names, and
addresses. Management systems must be able to follow translations of
managed and management elements in different domains.

Fixed topology assumption. The assumption is that topology
information is modeled (eventually discovered) in terms of physical entities
in a shared network that will change infrequently.

In a virtualized environment, this assumption only holds for the
underlying physical network. Virtual network topologies may occur, change,
and disappear frequently, controlled by the virtualization layer and
bypassing the management system. Automatically maintaining topology
information with known techniques (discovery protocols) is also hard due to
virtualized networks. Topology must be related with dynamic information
from the network virtualization layer.

Physicality assumption. The assumption is that managed elements
physically exist in a network and can eventually be discovered.

Virtual entities are not physical entities. Their existence depends on the
transformation process in the virtualization layer and is controlled there.
Virtual entities are thus hard to be discovered automatically. They are not
responding to discovery protocols and may appear and disappear
spontaneously.

Uniqueness assumption. The assumption is that one entity (resource,
application, service, etc.) exists only once.

Since virtualization has a multiplication effect, entities may exist
multiple times, even under same identity (for purposes of transparent
replication, for instance).

248 Chapter 9

Fixed association assumption. The assumption is that applications
reside on machines for longer periods, hence monitoring data from machines
can implicitly be correlated with the application running on that machine.

In virtualized environments, associations between machines and
applications may change frequently. Changes are under the control of the
virtualization layer, not the management system.

Single-layer assumption. The assumption is that the management
systems only views one layer of resources and applications, only seeing the
elements that are visible in that layer.

In a virtualized environment, the virtualization layer introduces a clear
and enforced separation between layers of underlying entities and the layer
of created (transformed) virtualized entities. These boundaries must be
obeyed by management systems. We propose modeling layers as separate
management domains taking separate identification, name and address
spaces in those domains into account and performing necessary translations
for cross-domain interactions.

Highest authority assumption. The assumption is that the management
system has highest authority (power of control) in the system. All control is
exercised from the management system and its operators.

Virtualization layers have emerged independently from management
systems as control points outside of management systems. These control
points must be integrated back into management systems reinforcing their
authority of control (see section 5).

Full transparency assumption. The assumption is that the management
system sees everything in the management domain and has control.

The virtualization layer internally hides associations with underlying
entities making them intransparent to the management system.

Furthermore, the virtualization layer can alter associations anytime
without notifying any other components in the system including the
management system.

Shared infrastructure assumption. The management system, or part of
it, uses resources from the same environment as the managed system for its
own operation, resources that may have been virtualized as well.

Management interface assumption. The assumption is that manageable
elements provide management interfaces (such as SNMP interfaces) that can
be reached through a shared network infrastructure and are used to exchange
monitoring data and control instructions.

Virtualized entities (resources) usually do not have management
interfaces (although they could), making them invisible for management.

Management Using Web Services 249

5. CONCLUSIONS FOR MANAGEMENT SYSTEMS

Based on the discussion, various conclusions for management systems
and for virtualization layers can be drawn:

- Open the virtualization layer for management systems allowing them
to access information about associations between virtualized and
underlying entities.

- Integrate virtualization control into the management system re-
instantiating authority of control of the management system.

- Model layers as management domains. Establish separate
management domains for virtualized and underlying entities
recognizing the layer boundary between them.

- Provide management interfaces for virtualized resources allowing
them to be accessed for management purposes similarly like their
underlying counterparts.

- Develop resource (service) models that explicitly incorporate
virtualizations.

- Introduce a notion of time when following associations from
virtualized entities to underlying physical entities since those
associations vary over time.

- Reconsider identification, naming and addressing of managed as well
as management elements based on network addresses. Translations
across virtual network domains must be taken into account. An
alternative is creating a separate system for element identification,
naming and addressing that is independent of virtualization.

- Divide topology information into static aspects and dynamic aspects
that depend on associations created by the virtualization layer and
may change.

6. INTERFACE FOR A GENERIC
VIRTUALIZATION LAYER

Due to the large variety, individual virtualization layers or systems are
not discussed here. Rather, a pattern for a generic interface between a
management system and a generic virtualization layer is presented that can
guide construction of resource management systems.

250 Chapter 9

Management Domain MD' (virtualized e')

4'irt"^^ i n ? ^ •t « - ^
virtual e'
— J — _ _

VirAalization T nj'er "~w||

mo

bno
jndeylyirtg e

Management Domain MD (underlying e)

H
management interface

management object

Figure 91: Management in an environment with virtualized and underlying entities.

Figure 91 shows an abstracted scenario with a set of underlying physical
entities E (e eE) in the lower layer and virtualized entities E' (e 'eE ') in the
upper layer. E' is created by transformations in the virtualization layer at
time t. Associations (n:m) between E and E' are maintained and controlled
by the virtualization layer:

assoc(E,E') c {en x em'},

with en e P(E), em'e P(E').

Entities in both layers are subject to management (managed objects) and
are accompanied by management objects (mo for e, and mo' for e'). Mo' are
not virtualized mo. They are instrumentations that have to be brought into
management domains separately. In both layers, entities are accompanied by
separate management objects that are providing the interface to the
management system.

The management system models the partitioning into layers as separate
management domains MD and MD' with management objects (mo G MD,
mo' G MD').

Since monitoring and control tasks are to be performed upon entities e
and e' through management objects mo and mo', management objects are
connected with associated entities through a management interface.
Examples are SNMP or other management protocols. Management
instructions received from the management system are translated in
management objects into corresponding interactions with associated entities.

Management Using Web Services 251

An additional management interface must be provided by the
virtualization layer to management objects mo' in the virtualized domain
MD' since part of control of virtualized entities is provided by the
virtualization layer. Management objects mo in the underlying layer may
also have access to the management interface of the virtualization layer. This
is not required when this layer should be kept unaware of virtualizations
created above.

The virtualization layer itself should be integrated under the control of
the encompassing management system, and not exist separately.

6.1 Inner-Layer Management

Since layers established by virtualization are modeled as separate
management domains. Traditional management techniques apply with
managed (e) and management objects (mo) within each layer.

The only specific property in MD' is that management objects require
control over their associated managed entities that is provided by the
virtualization layer and hence has to be exercised through a management
interface of the virtualization layer.

6.2 Cross-Layer Management

Cross-layer management is a more interesting case where management
tasks have to be performed that span across layers of underlying physical
entities and created virtualized entities. Examples of such tasks (use cases)
include:

- Replace an underlying (e.g. a machine), but take care of
arrangements in the virtualized layer (e.g. affected applications
running on that machine) before making that replacement.

- Identify which bindings to underlying physical entities have to be
resolved when a virtualized entity migrates.

- How can measurements in underlying physical entities be
correlated with entities in the virtualized layer such as applications
running on a server device at time t.

Since the virtualization layer maintains the associations between
underlying and virtualized entities, cross-layer management requires
tracking those relationships.

Since association may change, associations are depending on time.

252 Chapter 9

6.3 Time-dependence of Associations

The first two cases only require knowledge about current associations.
The third case may also include knowledge about associations of prior times,
or even future times when associations have already been determined.
Maintaining information about associations in the past would require that
records about transitions altering associations would have to be kept in order
to recall that information later for any given point in time.

6.4 Association Interface

The association interface plays an important role for cross-layer
management. The association interface is attached to the virtualization layer
and allows obtaining associations (including attributes of associations)
between virtual ized entities and underlying physical entities. The interface
can be equipped taking time-dependence of associations into account
(assumed here).

The association interface consists of two functions. One function is
resolving a given underlying entity e into a set of virtualized entities e' to
which associations exist at time t. The other function performs in the reverse
direction resolving a given virtualized entity e' into a set of underlying
entities e to which associations exist at time t:

f (e , t) ^ {e'assoc} at timet,

with e 6 P(E), e'assoc e P(E')

f(e',t) -> { Cassoc} at time t,

with Cassoc e P(E), e' G E '

(when no time-dependence is supported, the current association is
referred to).

Each management domain (MD and MD') has additional functions to
resolve (managed) entities into associated management objects (mo):

- f(e) -> {mOe}, with e e E, mOe G MD,

and the reverse:

- f(mOe) -> {e}, with e G E, mOg e MD.

With these primitives, association chains between virtualized and
underlying entities can be tracked across management domains for cross-
layer management purposes.

Management Using Web Services 253

For example, in order to identify all management objects in MD' that
represent virtualized entities depending on a given underlying entity e, the
following invocation chain resolves e into desired {mo'}:

- inVL: f(e,t)-> {em'},

- in MD': Ve' G em': f(e') -> {mo'e},

- or combined: f(f(e,t)) -> {mo'e}.

(VL stands for Virtualization Layer.) Determining management objects
mo' in the virtualized layer based on entities e from the underlying layer is
useful for case 1 in section 6.2 when management operations have to be
performed in entities e' in MD' that depend on e in the underlying layer, and
when the underlying entity e has to be changed or replaced affecting
virtualized entities above.

This example shows how cross-layer management tasks can be
performed referring to information about associations in the virtualization
layer. The virtualization layer was extended by the proposed interface for
this purpose. Similar techniques can be used for translating identities, names
and addresses of entities and accompanying management objects between
management domains.

7. APPLICATIONS

The virtualization capabilities enabled by web services are being used in
the domain of utility computing and grid computing.

7.1 Utility Computing

Businesses are carefully examining all IT expenditures. Many firms are
finding that their IT infrastructure is too inefficient and unresponsive to meet
the needs of a dynamic business and is not aligned with business needs. The
concept of utility computing is to provide IT with the tools to apply
computing resources more like an electric utility. In this service-driven
model, computing resources are dynamically allocated to meet demands, and
systems are increasingly self-managed to maximize flexibility and ease of
administration. The result is that IT can be run as a service to the business,
and excess capacity can be reduced.

The term Utility Computing embraces the vision of accessing and
supplying standardized (and commoditized) computational resources as
services anywhere and anytime and without a difference in time or location.

254 Chapter 9

similarly like other utilities such as water or electricity. Pervasive computing
or "on-tap" computing are other term used in this context.

However, there are differences between a water or a power utility and a
computational utility. Using power from an outlet only relies on quantitative
parameters, no matter where the power has been produced or how it is
distributed though the network. In a sense, the power utility system is
stateless to the consumer. Computational services typically have state
associated. This state needs to be made accessible to a specific
computational facility in order to provide the desired service for a consumer.
Providing that state to any computational facility is a major technical hurdle
for achieving true utility computing.

Behind the vision, two characteristics are associated with utility
computing today:

- The technical separation of resources provided in a computational
facility (such as a data center) from the state (applications, data) of
a particular consumer which only in their combination allows to
perform the desired computational services.

The separation of ownership of the computational facility and the
service customer.

The first aspect, the separation of resources from consumers' state is
supported (enabled) by virtualization today. Virtualization of resources
allows separating state (applications and data) from machines and other parts
of a computational facility. The second aspect is organizational, the
separation of roles of the owner of computational resources and all
associated facilities, such as buildings, networks, and infrastructure, from the
consumer (and customer) of computational services. The customer pays for
the computational services, which includes the portion for using
computational resources and infrastructure. The advantage for the customer
is to avoid binding capital in infrastructure, equipment and all efforts for
maintenance and evolvement.

Depending on how contractual terms are arranged, the customer may
choose from a variety of alternatives such as:

- a fixed rate for a certain contingent of resources used over time,

- pay-per-use, determined by actual use or resources, or

pay for a certain Quality of Service.

Rates depending on usage require a metering and accounting
infrastructure. Both models also exist in traditional utility environments (for
example, local phone service typically provided with a fixed rate in the U.S.,

Management Using Web Services 255

and long distance phone service, power or water utilities typically metered
and paid as used).

Another advantage of applying the utility model to computing is that the
utility provider can share facilities among different customers allowing for
more efficient utilization and lower prices. However, sharing in compute
utilities introduces security risks that need to be addressed. Again, the
problem is related to the state associated to individual customers that need to
be protected from undesired access, damage or loss.

7.1.1 The Stages Towards Utility Computing

Three areas define the modem computing industry: the mainframe era,
which revolutionized business by automating the back office; the
client/server era, which marked the beginning of departmental automation;
and the current stage, the network era where computational services are
arbitrarily accessible.

Each of these eras has been marked by businesses worldwide embracing
new ways of computing to transform their operations. No change has had
more impact than the Internet, which itself can be seen in three distinct
phases.

Data and Information Utility. In the first phase, companies began
offering access to information on simple web sites. Consumers could look up
information everywhere from flight information to bank account balances. In
most cases, web sites did little more than replicate data that was stored in
central systems. Information became more widely available, but for the most
part remained static, limiting its utility. This stage can be called Data and
Information Utility.

Service Utility. The second stage can be described as integrating data
and computation to personalized services. Services such as storing data,
collaborating over distances over the Internet provide more than just access
to data and can thus be called service utilities.

Business Utility. In the third phase, the Internet became a medium for
business transactions. Banks enabled customers to move money among
accounts. Airlines allowed online reservations. As companies integrated
internal systems and business processes behind the scenes, transactions of all
kinds were made possible. Information became more highly actionable.

More than a quarter of all large firms (1000+ employees) and over half of
the world's largest companies today can be seen in this second stage. They
are building seamlessly integrated end-to-end business processes that allow a
wide range of new interactions among their various constituencies.

256 Chapter 9

1A2 Utility Computing Infrastructure

Industry analysts suggest that customers' push for utility computing
originates primarily from the human costs associated with maintaining large,
complex IT environments and the resulting lack of agility. To address this
problem large vendors HP, IBM, and SUN, as well as a number of startups
have announced initiatives or products that aim for utility computing. Many
of these are attempting to improve IT utilization by various virtualization
techniques, while others provide configuration and provisioning capabilities,
or aim to monitor and manage the IT environment more efficiently.

Utility computing can be defined as the ability to provide complex
computing environments on-demand to IT customers. Achieving utility
computing is difficuh because the needs of enterprise users are complex.
Each application running within the enterprise has unique assumptions, each
enterprise has different policies that are associated with its applications, and
each customer brings a different set of requirements for their application.

Providing infrastructure that supports these diverse requirements is
inherently difficult. While techniques such as virtualization or load
balancing are necessary for utility computing, they are not sufficient. To be
successful, a utility computing system must

- support the design, deployment, and management of arbitrary
applications while dealing with their frequently competing
requirements for resources.

It must accommodate both user and operator policies on how
infrastructure is used and

- deal with upgrades of both the infrastructure and the applications.

- And it must maintain a high level of automation to reduce errors and
manage costs.

Problems must be addressed from the perspective of IT customers. That
is, given customer-specified requirements for a complex application, how
can the corresponding system specification be automatically created and the
system provided to the customer on-demand? The goal is to provide
customers and IT service providers with tools that support the entire
lifecycle of a computing task, including the design, deployment, operation,
and decommissioning of that task while maintaining flexibility, agility, and
cost efficiency within the utility through automation.

The term service oriented architecture (SOA) has been introduced to
describe the overall approach of building loosely coupled distributed
systems with minimal shared understanding among system components. A
Web service is considered a software system designed to support

Management Using Web Services 257

interoperable machine-to-machine interaction over a network. It has an
interface described in a machine-processable format (such as WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards. A
service-oriented architecture defines a distributed system wherein agents,
known as services, coordinate by sending messages.

Utility computing requires a high degree of interoperability among the
participants of a utility systems, at the access level as well as at the meta-
level, where descriptive information about utility resources are exchanged.
Employing a service-oriented architecture for utility systems basically means
modeling a system as a distributed system in which all entities are seen as
services.

7.2 Web Services in Grid

Grid computing emerged as a paradigm of sharing resources for
collaboration and resource usage optimization purposes. A Grid is made up
of a finite set of nodes. A node is a system that manages a set of resources.
A node may be a single system or a cluster. A resource being managed can
be a network, system, or an application. Being mostly used in academic
environments, "best-effort" was (and is) a sufficient policy for committing
resources to users performing their computational workload.

The Open Grid Services Architecture (OGSA) presents a new vision for
the grid. Motivation was that in both, e-business and scientific computing
environments services need to be integrated across distributed,
heterogeneous, dynamic "virtual organizations" formed from disparate
resources within a single enterprise and/or from external resource sharing
and service provider relationships. Building on concepts and technologies
from the grid and Web services communities, the OGSA defines a uniform
exposed service semantics also referred to as the grid service. OGSA defines
standard mechanisms for creating, naming, and discovering transient grid
service instances. It provides locations transparency and multiple protocol
bindings for service instances, and it supports the integration with various
underlying platform facilities.

OGSA defines grid service interfaces in terms of the Web Service
Description Language (WSDL) with associated conventions and
mechanisms required for creating and composing complex distributed
systems, including lifetime management, change management, and
notification.

258 Chapter 9

OGSA defines the concepts how grid functionality can be incorporated
into Web services within and across organizational domains. The notion of
a Virtual Organization facilitates the workflow of a group of users across
multiple domains who share (some of) their resources to solve particular
classes of problems.

OGSA itself is structured by a variety of services. All grid service
execution or communication relies on basic transport and security functions.
These functions are defined within the Grid service specification as binding
properties, meaning that a particular service implementation may choose to
implement them using any protocol.

The Grid conceptual architecture is presented in Figure 92. The Grid
deployment infrastructure is where the resources (applications/software,
machines, networks, farms) are provisioned. The OGSA infrastructure which
is based on a Web services infrastructure (.Net, J2EE based), provides the
basic functionalities that deal with creation through factory, life cycle
management, obtaining management related information through
manageability interfaces, and other services like notification and invocation.
The OGSA meta-services are higher-level functionalities that deal with
provisioning/allocation, clustering, policy specification, security and
problem determination. Applications can be defined on top of the meta-
services. The following figure shows the OGSA basic services built above
an infrastructure.

Applications

OGSA meta services

CfustBiing Pblicy Logging
Tracing

Provlsionrng Security Pmblem
detBctlon

/i factory ; Registry '"M Itfe-cycle -.'si ma t̂ageability r. notification

C3ridi Services layer

Figure 92: Open Grid Services Architecture (OGSA).

OGSA defines services to be executed within a hosting environment that
is similar to such environments in Web services. Standard interface

Management Using Web Services 259

definitions such as those defined within the Grid service specification allow
two services to interoperate. They do not address the portability of service
implementations. Work is required to define standard hosting environments
in order to enable portability. The following are examples: Within a J2EE
environment, standardized Java APIs can be defined to allow for portability
among OGSA-enabled J2EE systems. Entropia, United Devices, and Condor
allow untrusted (and untrusting) desktop systems to participate in distributed
computations. A standard ''desktop" hosting environment would allow for
interoperability among these different systems. The TeraGrid project is
defining standard "execution environments" for computers that run scientific
applications. These execution environments assume Linux and define
conventions for the locations of key executables and libraries, and for the
names of certain environment variables.

7.2.1 Basic Interfaces and Behavior

The following enumeration represents a set of interface and behavior
definitions that appear particularly fundamental to the creation of
interoperable Grid systems. The inclusion of an interface in this list is not in
any way a binding categorization.

Common resource models. The OGSA common resource model enables
consistent distributed management and access to these resources without
having to understand the details of implementation of the resources, whether
they are instrumented in CIM or SNMP or MDS/Glue, etc.

Registry and service discovery. OGSA describes a registry service as one
of infrastructure services to support the registration, and subsequent
discovery, of service instances. One or more standard registry behaviors
need to be defined to permit service discovery in various settings.

Handle Resolution. OGSA requires an infrastructure service that enables
handle resolution for dynamic invocation of services.

Service domain. In what seems likely to be a common architectural
approach, an OGSA-compliant "service" is implemented via a collection of
internal services that are managed in some coordinated fashion. Standard
interfaces and behaviors need to be defined to facilitate the creation and
operation of, and the integration of new services into, such service domains.

Policy. A Policy is a definitive goal, course or method of action based on
a set of conditions, to guide and determine present and future decisions.
Policies are implemented or executed within a particular context (such as
policies defined for security, workload management, network quality of
service, etc.). They provide a set of rules to administer, manage and control
access to Grid resources. Policy Services are required to provide a

260 Chapter 9

framework for creating, managing, validating, distributing, transforming,
resolving, and enforcing policies within a distributed environment.

Security. Requirements here are wide reaching. Fortunately, a substantial
effort has already started within the OGSA Security WG on an OGSA
security roadmap that defines requirements, relationships to other standards
efforts (e.g., WS Security) and priorities for early development.

Distributed data management services, supporting access to and
manipulation of distributed data, whether in databases or files. Services of
interest include database access, data translation, replica management,
replica location, and transactions.

These foundation functions and services are discussed in more detail
below. Other service not further discussed should be mentioned:

Workflow services, supporting the coordinated execution of multiple
application tasks on multiple distributed Grid resources.

Accounting/auditing services, supporting the recording of usage data,
secure storage of that data, analysis of that data for purposes of billing, fraud
and intrusion detection, and so forth.

Monitoring services support the discovery of "sensors" in a distributed
environment. The collection and analysis of information from these sensors
is supported as well as the generation of alerts when unusual conditions are
detected, and so forth.

Problem determination services for distributed computing, including
dump, trace, and log mechanisms with event tagging and correlation
capabilities.

Clustering services for grouping and management of distributed peer
service instances in order to provide coordinated management actions such
as disaster recovery and load balancing, through dynamic join/leave
semantics and ordered message and event delivery.

Security protocol mapping services, enabling distributed security
protocols to be transparently mapped onto native platform security services
for participation by platform resource managers not implemented to support
the distributed security authentication and access control mechanism.

Recently Web service Resource Framework has been proposed as the
specification for defining the management related interfaces to grid services.

Management Using Web Services 261

SUMMARY

Just like Web services add complexity to the task of management, it also
brings to the table a set of technologies that may simplify the task of
management itself. By realizing a set of technologies for Web service
description, discovery and invocation it has provided management
community the capability to virtualize a wide array of network, system,
application components. This has led to the application of Web services
technology to the domain of grid computing and utility computing. Both
these domains appear quite promising for the vision of Web services being
used in management.

Appendix

WEB SERVICES MANAGEMENT PRODUCTS
AND SOLUTIONS

1. INTRODUCTION

A wide variety of management systems and solutions exists and has
created a mature industry for producing, deploying and operating large IT
infrastructures. With the growth in IT systems, accompanying management
systems also grew in complexity, diversity and scale.

Today, the market for IT management systems is dominated by large
vendors such as IBM (mainly represented by the Tivoli suite) (IBM Tivoli),
Hewlett-Packard (primarily with the OpenView suite) (HP OpenView), and
Computer Associates (CA). These vendors cover the large space of IT
management with comprehensive sets of products and solution portfolios.

A management system for an IT infrastructure is not a monolithic
product. It is a portfolio comprised of different products and custom

263

264 Appendix

solutions, each covering a different aspect of management of an IT
infrastructure. Vendors provide product portfolios from which customers or
solution providers can chose for building tailored management solutions.
Customizability is a main property of system management products.

As discussed earlier, product portfolios management systems vendors are
following the trend from infrastructure and service management towards
business-aware management. New management products are being primarily
introduced in the higher service and business-aware management layers.
Examples from the HP Open View, IBM Tivoli product portfolios and new
startups are discussed in sections 2 , 3 , 4 , 5, etc.

Due to the complexity and diversity of management product portfolios,
we will present in this chapter only a selection of these products that
represent the three main layers of management:

• Infrastructure management

• Services management, and

• Business-aware management.

For each management layer, two products from the dominant
management product suites, HP OpenView (OV) and IBM Tivoli, are
presented in more detail.

2. HP OPENVIEW MANAGEMENT SUITE

The following table provides an overview of the OpenView product and
solutions suite. The highlighted products are discussed in more detail in the
following sections, two for each management layer of infrastructure, service
and business-aware management.

Product Description

Advanced Security Operations add-on to manage business critical
data over insecure networks.

Cisco Integrations HP OpenView Smart Way solutions and
Cisco Works Integration.

Continuous Access Storage application platform, enabled by
Storage Appliance virtualization technology, delivers local and

remote data replication and migration
capabilities across heterogeneous storage
devices.

Web Services Management Products and Solutions 265

Customer Views for
Network Node Manager
(NNM)

Integrates with NNM to provide customer-based
management of network environments.

Data Protector Delivers new levels of recovery with a service-
driven management approach.

Database Pak 2000

Dynamic Netvalue
Analyzer

Event Correlation
Services

Event Correlation
Services Designer

Extensible SNMP Agent

GlancePlus

GlancePlus pak

Internet Services

Manage the performance and availability of HP
9000 servers and databases in enterprise
environments.

Real time IP solution that transforms raw usage
data into business information.

Correlate events from multiple system layers,
integrated with NNM and OV Operations.

Transforms and processes event streams to
correlate different event types messages.

Extends SNMP to control basic network devices,
critical systems and applications.

Performance monitoring and diagnostic tool
providing immediate system information.

Extends GlancePlus with historical data
capabilities of Performance Agent Software.

Provides an integrated view of a network
infrastructure.

Internet Usage Manager
(lUM)

IT Administration

Open, multi-platform mediation and business
intelligence solution.

Centralized user, software and system
administration in heterogeneous environments.

lUM CDMA Solution CDMS data billing mediation and voice switch
mediation solution.

lUM GPRS Mediation
Solution

lUM Prepaid Data

ManageX

Network Node Manager

A specialized set of extensions that process
usage data from network equipment conforming
to the General Packet Radio Service (GPRS)
specification.

A scalable, mediation solution for prepaid data
management.

Assures availability and optimal performance of
Windows NT and Windows 2000.

Enables problem detection with statistics, alarms.

266 Appendix

(NNM)

Network Node Manager
Developer Toolkit

Network Node Manager
Extended Topology

and maps of networks on a single display.

Development tools to create products that
integrate with Network Node Manager.

Offers reduced problem resolution in complex
networks with accurate views and automated
problem analysis.

Client/server-based solution providing virtually
unlimited growth of file systems.

Toolkit for integration and instrumentation
modules for OpenView Operations.

A distributed solution that monitors, controls and
reports on IT environment health (for UNIX).

A distributed solution that monitors, controls and
reports on IT environment health (Windows).

Works with Operations to extend IT environment
management to OS 390 domains.

Works with Operations to extend IT environment
management to OS 400 domains.

Single interface for monitoring, analyzing, and
forecasting resource utilization.

Turnkey application that monitors and reports on
network protocols and devices.

Provides status and performance information on
static and dynamic network paths.

Enables IT to provide timely and accurate reports
to prove IT service quality levels.

Automates start and delivery of services offered
by internal and external service providers.

Enables measurement, monitoring, and
troubleshooting across all elements of a customer
service transaction (for UNIX).

Enables measurement, monitoring, and
troubleshooting across all elements of a customer
service transaction (for Windows).

Omnistorage

Operations Developer
Toolkit

Operations for UNIX

Operations for Windows

OS/390 Management

OS/400 Management

Performance
Manager/Monitor/Agent

Performance Insight for
Networks

Problem Diagnosis

Reporter

Service Activator

Service
Assurance/UNIX-based

Service
Assurance/Windows-
based

Web Services Management Products and Solutions 267

Service Desk

Service Information
Portal

Service Navigator

Service Quality Manager

Smart Plug-Ins (SPI)

Software Distributor

Storage Accountant

Storage Allocator

Storage Area Manager

Storage Builder

Storage Management
Appliance

Storage Media
Operations

Storage Node Manager

Storage Optimizer

Storage Provisioner

Storage Virtual
Replicator

Implements a helpdesk solution with problem,
change, configure, and SLA management
processes as a single workflow.

Create a portal view to show status information
of a customer's IT environment.

Manage applications and services from a
business perspective with graphical views.

Service level agreement and service quality
management automation for a service provider.

Integrated instrumentation components that plug
into HP OpenView products for extending a
managed domain.

Centralized UNIX software distribution
capabilities.

Storage metering and billing for budgeting,
financial analysis, and charge-back.

Virtualized storage access control and logical
storage assignment.

Integrated and centralized storage area
management across distributed, multi-vendor
storage resources.

Storage capacity assessment, monitoring, and
management.

A solution for monitoring and management of
storage appliances.

Automated tracking and management solution
for productively managing the complete life
cycle of removable storage media.

Automated device discovery, topology mapping
and centralized event monitoring, configuration
and troubleshooting for storage systems.

Storage performance assessment, monitoring,
and management system.

Capacity management and utilization tool that
resolves unpredictable storage demands in
complex IT environments.

Server-based virtualization tool that creates
snapshots, provides storage administration for

268 Appendix

Windows NT/2000 environments.

Telecom Extensions for
OV Operations

TeMlP Expert

TeMIP Fault
Management

TeMIP Framework

TeMIP Service Monitor

OpenView Transaction
Analyzer (OVTA)

Trend Performance
Manager

Unified Developer
Toolset

Web Transaction
Observer

Enhances OV Operations with network element
and EMS data, includes data collection and alarm
management.

HP OpenView TeMIP Expert provides expert
system rules that capture the expertise and
knowledge within network operations and
automate operations processes to solve problems.

HP OpenView TeMIP Fault Management and
Real-Time Operations is an alarm-handling and
event-logging network visualization solution in
the TeMIP framework.

HP OpenView TeMIP Framework provides a
scalable set of telecom middleware services for
applications to communicate in real time via the
network and each other.

HP OpenView TeMIP Service Monitor provides
Service Impact Analysis for diverse networks
and services.

Facilitates web application problem resolution by
identifying and directing attention to specific
performance bottlenecks.

Repository and database engine that supports
performance insight for networks.

Using standard-based integration mechanisms,
HP OpenView Unified Developer Toolset
enables developers to create off-the-shelf
applications that integrate with HP OpenView.

Monitors customer experience on specific URLs
by integrating performance metrics.

Table 6: Overview of the OpenView Suite (Hewlett-Packard, 2003).

The following examples of products from the OpenView suite
exemplifies the management space from infrastructure, service and business-
aware management.

Infrastructure Management: - Network Node Manager (NNM),

- Smart Plug-Ins (SPI),

Web Services Management Products and Solutions 269

Service Management:

Business-Aware Management:

• Internet Usage Manager (lUM),

- Service Navigator,

- Open View Transaction Analyzer
(OVTA).

3. TIVOLI MANAGEMENT SUITE

Underlying the Tivoli management solution set is a group of common
services and infrastructure that provide consistency across Tivoli
management applications as well as enabling their integration.

Within the Tivoli product family, there are specific solutions that target
four primary disciplines of systems management:

Performance and Availability,

- Configuration and Operations,

Storage Management, and

Security.

Products within each of these areas have been created over the years and
have become implemented as management solutions in enterprises around
the world [Feam 1999]. With these core capabilities, IBM has been able to
focus on building management applications that take advantage of the pillars
shown in Figure 93 from infrastructure management to business solutions. A
typical business application depends not only on the hardware and
networking, but also on software ranging from the operating system to
middleware such as databases, Web servers, and application servers and
messaging, to the applications themselves comprising a business service.

Business Systems Management

Performance
and

Availability

ConflguratioB
and

Operations
Storage Security

Common Infrastructure Services

Figure 93: Tivoli management structure.

270 Appendix

The suite of Tivoli solutions allows an IT department to provide
management of the entire business ecosystem in a consistent way, from a
central site, using an integrated set of tools. By utilizing an end-to-end set of
management solutions built on a common foundation, enterprises can
manage and follow up with the increasing complexity of IT infrastructure
with reduced staff and increased efficiency.

Figure 94 shows a vertical view to the Tivoli Management Architecture.
At the lower level shown in Figure 94, monitoring products and technologies
exist such as IBM Tivoli Monitoring in combination with resource models.
At this layer, Tivoli monitors the hardware and software, and provides
automated corrective actions when possible.

Business Impact Management

Line of Business views, workflow, business process integration
QfQss digQiplipe gnglysis.

predict optimize, analyze, account report

Event Correlation and Automation

Cross system and domain root cause analysis

Monitor Systems and Applications

Discover, collect metrics, probe /e.g. user experienced,
perform local analysis, filter, concentrate,

determine root cause, take automatic action

Rapid time to value
- open architecture
- may be deployed independently
- out of box best practices

Ease of use
- superior value with a fully

integrated solution

Quality
- processes, roles, and metrics
- rapid problem response

Figure 94: Vertical view to Tivoli Management.

At the next level is event correlation and automation. As problems occur
that cannot be resolved at the monitoring level, event notifications are
generated and sent to a correlation engine such as Tivoli Enterprise Console.
The correlation engine at this point can analyze problem notifications
(events) coming from multiple components and either automate corrective
actions or provide the necessary information to operators.

The third tier in this structure is called Business Impact Management. It
is important to know that a component or a related set of components have
failed as reported by the monitors in the first layer. For instance, a router
being down could cause database clients to generate errors if they cannot
access the database server.

Web Services Management Products and Solutions 271

The third layer. Business Impact Management, is the most valuable, as it
provides an insight into how a component failure may be affecting the
business as a whole. When the router failure mentioned above occurs, it is
important to understand exactly what line of business applications will be
affected and how to reduce the impact of that failure on the business.

Tivoli Business System Manager (TBSM) and Tivoli Web Site Analyzer
(TWSA) provide capabilities of business systems management because it
provides the means to understand the business from the perspective of the IT
infrastructure.

By sharing a common reporting interface with the other Tivoli
components, Web site usage data can be correlated with operational data to
discover relationships, which would otherwise be hidden to the organization.
Examples of those relationships between the business patterns and the IT
infrastructure supporting the business systems are:

Web site activity as a function of the transaction response times.

CPU and memory usage as a function of campaign launches.

- User shopping time as a function of database buffer pool
utilization.

- Number of referrals as a function of network bandwidth.

In addition, external data such as weather data at various locations, stock
quotes, currency exchange rates, and population data may be added to the
information warehouse to allow for extended analysis of the usage patterns
of a Web site, and the need for IT resources to support the associated
business. In the "on-demand" world, these types of analysis are critical to be
able to predict when load will peek - and more importantly, why. This will
enable better control of resource use and qualified decisions on the trade-off
between business and capital investment.

3.1 Tivoli Product Portfolio

Similarly like OpenView, the product portfolio of Tivoli is designed to
cover a comprehensive space of management tasks. A summary of Tivoli
management products is shown in the following table.

272 Appendix

; Tivoli Product Category with Products

Network Management:
Tivoli Switch Analyzer
Tivoli NetView

Tivoli NetView for z/OS
Tivoli NetView Performance Monitor

I Storage Management:
Tivoli Storage Area Network Manager
Tivoli Storage Manager
Tivoli Storage Manager Extended Edition
Tivoli Storage Manager for Application Servers
Tivoli Storage Manager for Databases
Tivoli Storage Manager for Enterprise Resource Planning
Tivoli Storage Manager for Hardware
Tivoli Storage Manager for Mail
Tivoli Storage Manager for Space Management
Tivoli Storage Manager for Storage Area Networks
Tivoli Storage Manager for System Backup and Recovery
Tivoli Storage Resource Manager
Tivoli Storage Resource Manager Express Edition
Tivoli Storage Resource Manager for Chargeback
Tivoli Storage Resource Manager for Databases
Tivoli SANergy

Web Services Management Products and Solutions 273

i Monitoring:

Tivoli Monitoring

Tivoli Monitoring for Applications

Tivoli Monitoring for Business Integration

Tivoli Monitoring for Databases

Tivoli Monitoring for Messaging and Collaboration

Tivoli Monitoring for Network Performance

Tivoli Monitoring for Transaction Performance

Tivoli Monitoring for Web Infrastructure
Performance and Workload Management:

Tivoli Performance Modeler for z/OS

Tivoli Workload Scheduler

Tivoli Workload Scheduler for Applications

Tivoli Workload Scheduler for z/OS

System Management:

Tivoli System Automation for Linux

Tivoli System Automation for OS/390

Tivoli Access Manager for Operating Systems

Tivoli Analyzer for Lotus Domino

Tivoli Data Exchange

Tivoli Configuration Manager

Tivoli Remote Control

Tivoli Identity Manager

Tivoli Intrusion Manager

Tivoli License Manager

Tivoli Risk Manager

IBM Directory Integrator

IBM Directory Server

Tivoli Decision Support for OS/390

Tivoli Decision Support

Tivoli Enterprise Console

274 Appendix

Service Management:
Tivoli Service Level Advisor
Tivoli Web Access for Information Management
Tivoli Web Site Analyzer

Business-Aware Management:

Tivoli Point-of-Sale Manager
Tivoli Privacy Manager for business
Tivoli Access Manager for Business Integration

Tivoli Access Manager for business
Tivoli Business Systems Manager
Tivoli Business Systems Manager for z/OS

Table 7: Overview of the Tivoli Management Suite [IBM Redbook, 2003].

The following selection of products from the Tivoli suite represents the
space from infrastructure management to service and business aware
management. These products are discussed in the following sections.

Infrastructure Management: " Tivoli Storage Manager,
- Tivoli Monitoring for Network

Performance,

Service Management: " Tivoli Service Level Advisor,
- Tivoli Web Site Analyzer,

Business-Aware Management: " Tivoli Monitoring for Business
Integration,

- Tivoli Business Systems Manager.

4. WEB SERVICE NETWORKS

If the commercial Web services are to become a reality and to automate
real-world business on the web it is required that the Web service to Web
service interactions be secure, manageable, and reliable. In order to do real
business on the web these Web services need to specify, guarantee and meet
contracts, QoS guarantees amongst each other. This represents the next
frontier of Web service management. Some current providers are discussed
in the following.

Web Services Management Products and Solutions 275

4.1 Grand Central Communications

In the 5.1 Grand Central Communications (GCC) model, one create Web
services using existing tools, but rather than send messages directly between
consumers and producers, everything passes through a GCC hub. Within that
hub, GCC can perform a variety of transport-, session- and presentation-
layer transformations and resolve incompatibilities. For instance, a producer
and consumer may use different authentication or encryption schemes, or
one party may use SOAP over HTTP while the other might send and receive
using SMTP or even FTP. A GCC hub is based on IBM's MQ Series
software, thereby providing QoS (reliable delivery), non-repudiation and
other management features.

4.2 Flamenco Networks

Flamenco Networks (FN) takes a different approach. All parties using the
FN network install proprietary software web-services proxy software that
runs on any Java VM, dedicated or shared with other functions such as on an
HTTP server. The producer's and consumer's proxies communicate directly
with one another over the public Internet, not through a hub, but similar to a
VPN. The traffic is compressed, encrypted and the proxies provide message
queuing. Additionally, there's a management server that handles
authentication, non-repudiation and management of the proxy servers. You
can either license the management server or outsource this functionality to
FN.

4.3 Kenamea

Kenamea focusing on adding network services that enhance the
communication between the back end-the servers that support the
application and any user device that needs to run the application. Kenamea
adds an intelligent message queuing capability to the network that moves
beyond the basic request/response nature of the Web to a transactional,
event-driven model that can make Web applications more dynamic.

4.4 Talking Blocks

Talking Blocks (acquired by Hewlett-Packard in 2003) provides version
management between Web services. They ensure that partners have the same
software stack (middleware, language, interfaces, protocols, and versions) to
be compatible. They also provide a central hub through which the interaction

276 Appendix

happens and where partners register their information. The hub ensures
compatibility and evolution of the stacks by maintaining details of the
versions.

Note that none of these vendors are involved at the application layer.
They do not deal with business semantics such as orders or invoices.
Furthermore, none of them address the requirements for transactions using
either two-phase commit or based on compensating transactions. Until a
protocol such as ebXML (ebXML) and BTP, (the Business Transaction
Protocol) [Potts 2002] is adopted and implemented, transactions must be
managed within the applications. As they do not have application layer
semantics they do not know how to manage contracts between Web services.

5. CA UNICENTER

Computer Associates (CA) offers Unicenter for service and IT
infrastructure management. Unicenter is a family of modular, integrated
solutions addressing issues of managing complexity, maximizing IT staff
productivity, and orchestrating resources and services across the enterprise.

The goal of Unicenter is to synchronize the IT resources with the
constantly changing and evolving needs of the business. To achieve this,
Unicenter provides the following:

- Deliver IT as a Service - by mapping IT to the businesses, providing
business relevant management tools, and supporting IT as a service
business.

Make Infrastructure Self Managing - Unicenter has been extended to
allow it to self-deploy, self-manage, and self-heal, all based on the
policies defined by a customer. It includes dynamic resource
management, and introduces a new concept called service awareness.

- Service Oriented Architecture -The new Management Data
Integrator facility supports integration of in-house and third-party
solutions, and a new role-based visualization capability.

Unicenter offers a broad set of integrated components for managing the
health and availability of each aspect of a computing infrastructure. It
assesses and manages the cost of these components in the enterprise, and
it manages the services delivered to end-users.

Web Services Management Products and Solutions 277

6. ACTIONAL

Actional is another company that provides web services management
solutions. Actional's Web services management platform is architected to
help organizations manage the impact of constant change that is inherent in
enterprise Web service networks. Actional delivers visibility, flexibility and
active control on a Web services network. This level of control ensures high
uptime for monitored Web services while reducing the costs during ongoing
Web services management [Actional 2003].

Actional's active Web services management technology includes service
brokers, active agents and a centralized management and policy server. It
provides users with a complete view and active control of an entire
enterprise Web services environment. Actional's approach enables users to
understand the service network interdependencies; to know when the service
network deviates from its normal operating range; to identify the root cause
of problems; and to distribute active policy into the service network to both
correct and prevent problems.

Actional's Web Services Management Platform provides centralized
components for command, control and analysis across the service network as
well as powerful in-network components that enforce policy and act upon in­
flight messages.

The Actional Web Services Management Platform product suite
includes:

Centralized components:

- Actional Looking Glass Console,

- Actional Looking SOA Planner,

- Actional Looking Glass MyServices,

- Actional Looking Glass Server.

In-network components:

- Actional SOAPstation Service Broker,

- Actional SOAPstation-XD,

- Actional Active Agents.

7. AMBERPOINT

AmberPoint provides a web service management solution for problems
that arise because of web services based distributed systems spanning

278 Appendix

multiple computer systems and geographic locations. Management has to
address intra-enterprise domains as well as across enterprises.

There is also a high degree of heterogeneity in Web services itself. Some
Web services are built on .NET, some on Java and others are created from
legacy assets.

The AmberPoint Web services management solution is characterized by
following attributes:

Fully distributed implementation.

- Non-Invasive, plug-and-manage approach.

Content- and context-aware instrumentation.

- Active management.

- Dynamic and extensible.

Performance and scalability.

- Native implementations in .NET and J2EE.

Fully Distributed Implementation. The AmberPoint Web services
management solution is based on a distributed architecture for Web services
management. Key components are agents, analytical servers and
management consoles, all Web services-based and built to operate in a
distributed fashion.

AmberPoint Agents are lightweight software applications that are
deployed in a Web services network between Web services and their clients.
Agents provide the mechanisms needed for instrumenting Web services.
Agents enforce user-defined management policies for monitoring, auditing,
logging, security, routing, transformation, failover or load-balancing. Agent
can manage one or more Web services.

AmberPoint agents are built using standards-based Web services
themselves. They form a common runtime environment for all products in
the AmberPoint management suite. Once deployed, agents are visible to all
AmberPoint management components. AmberPoint agents can be deployed
on both .NET and J2EE Web services containers.

Flexible Agent Topologies. AmberPoint agents can be deployed in three
modes: as in-server plug-ins, as external proxies and as so-called out-of-
band T-Filters. The flexibility of its agent-based architecture allows
AmberPoint to bring comprehensive management capabilities to every
variety of a Web services system.

Decentralized Analytical Servers. AmberPoint utilizes task-specific
servers for analyzing the data acquired by agents. These analytical servers
analyze and distribute the workload between agents and servers. While

Web Services Management Products and Solutions 279

agents capture and aggregate real-time metrics locally, the analytical servers
aggregate this data across multiple agents, process the information and
maintains the historical view of the data. Analytical servers are built on
AmberPoint's agent technology and therefore can be distributed throughout
the Web services environment in the same fashion. More analytical servers
can be deployed as Web services systems evolve.

Decentralized User Interface. AmberPoint employs decentralized,
desktop-based and web-based management consoles for monitoring and
managing the Web services environment. AmberPoint user interfaces
communicate with distributed agents and servers via Web services.
Management consoles can be customized to different roles of users in
managing segments of a Web services network.

Concurrent Policy Management. AmberPoint user interfaces and agents
have built-in mechanisms for creating, enforcing and managing multiple,
independent management policies. Additionally, management policies can
be shared and reused. Different users can own role-specific management
policies and administer them from their points-of-view. Similarly, different
systems can issue different management commands to the AmberPoint
management runtime environment.

AmberPoint's agents and analytical servers allow the flexible distribution
of workload within an environment. Agents collect and aggregate data
locally while analytical servers aggregate data across the Web services
environment.

Non-Invasive, Plug-and-Manage Approach. AmberPoint solutions do not
require to change the Web services or their clients. They do not require
retrofitting code with proprietary controls, inserting proprietary headers or
using proprietary APIs. One can deploy AmberPoint's solutions completely
independently of Web services.

Content- and Context-Aware Instrumentation. AmberPoint agents
contain instrumentation for capturing the operational and business metrics
that are necessary for understanding the overall health of the Web services
environment. Instruments can be created to track performance (such as the
average response times or number of requests per hour) or to track business-
related information (such as the number of purchase orders that contain a
certain item). Together, operational and business insight derived from this
instrumentation allows making decisions such as allocating additional
resources to the Web services that process the greatest number of orders, or
prioritizing fault handling based on this information - thus enabling aligning
IT goals with business objectives.

Active Management. AmberPoint agents not only observe the Web
services environment, but can also act upon message content. They can

280 Appendix

execute customized management actions upon receiving certain request,
response or fault messages. Agents can execute actions immediately or on a
schedule. Actions can also be triggered by individual instrumentations
within agents or executed based on user-defined criteria. Actions can be used
individually or combined executing complex management tasks.

8. CONFLUENT

Confluent (acquired by Oblix) overlays its policy-driven management
platform over existing assets and infrastructure to consistently enforce the
operational policies that are critical to successful deployments, such as
security, encryption, service level management, logging, metering and
change management.

Confluent's management platform consists of three components:

- Confluent Policy Manager,

Confluent Monitor, and

- Confluent Enforcement Components—Agents and Gateways.

These modules in combination with Confluent's development
environment extensions address the challenges enterprises encounter for
application management, from development, to deployment, into operational
management and finally into business analysis. Seamless coordination
among policy enforcement, monitoring and business analytics enables
Confluent's management platform visibility, control and adaptability over an
entire suite of applications providing services on which business processes
rely.

9. MICROSOFT APPLICATION CENTER

Application Center is Microsoft's deployment and management tool for
high-availability Web applications built on the Microsoft Windows 2000 and
Windows Server 2003 operating systems.

Microsoft Application Center addresses several requirements.

Microsoft Application Center enables developers and Web site
administrators to deploy applications.

Furthermore, Microsoft Application Center also addresses operating
applications in clustered environments. A clustered environment comprises a
group of servers and turns it into a single, unified resource. By bringing the

Web Services Management Products and Solutions 281

servers together into a cluster, many servers can be managed as easily as
one. The idea of clustering is inherently built into Microsoft Application
Center. It:

Reduces application management complexity. Administrators can
construct logical groupings including the contents, components, and
configuration of applications. These groupings can be managed
throughout the cluster, reducing application complexity.

- Manages many servers as one. When changes are made to a server.
Application Center can automatically apply those changes to the other
servers in a cluster.

Streamlines application deployment. Application Center enables
migration of applications through the development cycle. It ensures
consistency between the stages across developing an application,
testing the application, and finally migrating it into production.

Software Scaling. Software scaling increases the capacity of an
application by adding or releasing servers. While hardware scaling
requires expensive, specialized servers, software scaling can be
achieved using standard off-the-shelf servers. In addition, with
software scaling, the relationship of cost to added capacity is close to
linear.

Application Center enables creating and running a group of servers as
operating a single server.

Its main advantages are:

- Accelerate cluster deployment. Traditionally, software scaling has
carried a high barrier to entry, including a high cost in complexity
and resources in getting applications to run on multiple servers as a
unified resource.

- Enable software-scaled architecture. Application Center enables
moving towards software-scaled architectures.

Scale resources with business needs. Applications can handle
increases and decreases in their capacity requirements by adding or
removing servers.

- No new application programming interfaces (API) are required.
Application Center offers the benefits of software scaling to existing
applications, without requiring modifications.

Mission-Critical Availability. Application Center is designed in a way
that any server might be brought down without affecting the availability of
the overall application avoiding a single point of failure. This means

282 Appendix

applications can achieve mission-critical availability using off-the-shelf
hardware without the need for cost-intensive high-availability hardware.

Microsoft Application Center:

- Ensures Availability. Application Center allows a Website to
withstand software and hardware failures without disrupting service.

- Actively monitors performance and health. Application Center
provides tools that monitor the cluster and its servers. It also allows
views into performance and event-log data for one server or the
entire cluster. Administrators can monitor applications remotely
using a browser-based console.

- Automates event responses. Application Center can monitor server
and application health and can take action in response to particular
events and conditions. Automated responses provide faster response
time, eliminate risk of human error and allow for higher overall
application availability.

10. SERVICE INTEGRITY

Business managers need information faster in order to make decisions
and operate efficiently. The Service Integrity Management Solution software
monitors, analyzes, alerts and reports key business activities enabling to
make timelier, informed decisions. The Service Integrity Management
Solution platform helps reducing risks in business by providing visibility
into business transactions.

The Service Integrity Management Solution technology provides a
detailed understanding into the business context of XML and Web services
messages passing through a Web services-based environment. It allows:

- Real-time visibility into service utilization.

- Template based and customizable querying capability for real-time
analysis of message data.

- Access to historical information for reporting, graphing, trending
analysis, and business impact analysis.

Service Integrity Management Solution operational capabilities include:

- Monitoring transaction performance through multiple tiers of Web
services.

- Measuring performance of Web Service invocations at service and
method level, and aggregated across a distributed system.

Web Services Management Products and Solutions 283

- Reporting SOAP invocation faults.

- Reporting operator defined error conditions.

Seamless integration with Microsoft Operations Manager and other
system management tools for event logging.

- Generating alerts based on historical baselines or service level
violations.

- Outputting data to pre-defined logs, dashboard monitors, and reports.

Service Integrity Management Solution requires no costly application,
hardware or network infrastructure changes or additions. Deployment and
configuration of a Service Integrity Management Solution is supported by:

- Web service-based auto-discovery of components.

- On-the-fly graphical configuration and viewing of logged data.

- Wizards-driven, interactive creation of dashboard views.

- Configurable alerting based on SNMP for integration with existing
management tools.

- Web services standards based implementation (XML, SOAP, and
WSDL) buih upon the same web services framework as the
applications it manages.

11. THE UTILITY DATA CENTER (UDC) -
INTEGRATED DATA CENTER RESOURCE
MANAGEMENT

Large data centers are under increasing pressure to become flexible
providers of IT services. This primarily means reducing costs and efforts to
adapt IT infrastructure faster to changing business needs and changing
demand conditions. This goal has been expressed by vendor visions of
Adaptive Enterprise from Hewlett-Packard [HP Adaptive Enterprise] and
Autonomic Computing from IBM [IBM Autonomic Computing].

Traditional IT infrastructure has become too static and too costly for
many enterprises. To ensure that sufficient resources are available to support
growth, IT planners have traditionally overbuilt and consequently
underutilized data center resources and infrastructure. Data center
infrastructure has thus evolved into such a complex collection of legacy
systems that are hard to manage in a uniform fashion.

Cost of change is the fastest growing factor of infrastructure total cost of
ownership. Enterprises have begun overcoming this barrier through
consolidation: centralizing and reducing the number of assets. But

284 Appendix

consolidation does not address the challenge of shifting resources to the
services that need them when they need them. This requires a
complementary strategy of virtualization. While consolidation aggregates
resources, virtualization enables different services to tap those resources
when needed.

One way how virtualization is provided for the entire set of enterprise
data center resources is the HP Utility Data Center (UDC). Leveraging
consolidation, the UDC creates a single virtualized pool of computing
resources, including servers, storage, appliances, and networks. All
resources are physically wired together (cabled) once at the time when the
UDC is installed. All subsequent provisioning is performed through the
central control unit of the UDC, which has control over network and storage
virtualization.

11.1 Resource Virtualization in the UDC

A so-called storage virtualization fabric connects storage elements to
processing elements (servers) via a Storage Area Network (SAN).

Presently, the chief barrier to rapid change is that network resources are
tied to physical installations. Excess server capacity or storage allocated to
one service cannot be transferred to another without physically picking up
and moving the resources, a time-consuming, expensive, and risky task.

The network virtualization fabric allows linking processing elements
with storage attached together with private virtual LANs (VLAN).
Processing elements connected though a VLAN then host the applications
comprising an application environment, such as for a three-tier Web service
implementation. VLAN also provide network isolation between different
application environments ensuring that application environments cannot
interfere with one another by accident or maliciously.

Three types of resources are virtualized:

• Network Resources - permitting the programmable rewiring of
server machines and devices in a virtual LAN network. Virtual
wiring is achieved by programming network switches connecting
machines and programmatically connecting or removing
machines to or from virtual networks.

• Storage Resources - provide logical volumes from storage units
(typically RAID systems) containing entire disk images with all
persistent states of application environments including file
systems, bootable operating system images, application software,
application data, etc. With programmability of the storage fabric.

Web Services Management Products and Solutions 285

disk images can be made appearing on SCSI interfaces of
machines as local disks from where machines boot and
applications can be launched.

load
balance#

farm

subnet 1

ODD ODD ODD DDD

subnet 2

server
group DD DDD

applications

server-^.r-

subnet 3

DDD

VLAN
switch

Virtual disks from the storage array
appear from where servers boot,
and applications are launched.

SAN
switch

Storage Array
_ „ _ I control

links

OV Resource Monitoritig

server pool

UDC Controller

X

IA64 H IA32 M

Figure 95: Resource virtualization in the Utility Data Center (UDC).

• Server Virtualization - server virtualization occurs in the sense
that different (compatible) server devices can be assigned and
re-assigned for hosting applications. The UDC makes the
decision which machines from its machine pool (meeting
compatibility and other constraints) will be assigned to
applications. Although virtual machine software can be
deployed in a UDC environment, the UDC itself does not
provide a virtual machine environment.

286 Appendix

11.2 The UDC Management System

The UDC management system controls the entire resource and service
environment in combination with management software that ensures
operations and monitoring support. The UDC management system allocates
and re-allocates ("flexes") server resources within the UDC between
applications according to fluctuating workload conditions.

Data center administrators operate the system from a browser-based UDC
portal console to design, configure and dynamically reassign data center
resources with drag-and-drop style of interaction. No physical changes are
required in the data center.

Figure 96 shows the web-based operator console in which an application
environment can be configured.

Activating new applications and their associated infrastructure
components can thus be achieved significantly faster and at lower cost
compared to traditional data centers.

ftttft- t i W .̂ ,p.«f vtaiva,

i

b. «4444+*

A

Figure 96: Operator console of the Utility Data Center showing the configuration of an
application environment.

Temporarily suspended applications can be reactivated in the range of
minutes and do not require reconfiguration or other action in order to be
reactivated. For reactivation, servers and network resources are allocated

Web Services Management Products and Solutions 287

from the resource pool and re-instantiated with the same state that has
previously been captured when the application was suspended.

REFERENCES

Chapter 1 - Introduction

Leymann 2000, Frank Leymann, Dieter Roller. Production Workflows.
Prentice Hall, 2000.

Cerami 2002, Ethan Cerami. Web Services Essentials. O'Reilly. 2002.

Pitts 2000, Natanya Pitts and Cheryl Kirk. The XML Black Book. Coriolis
Technology press, 2000.

Box, Don Box, David Ehnebuske, Gopal Kakivaya. Simple Object Access
Protocol (SOAP) 1.1. Available from http://www.w3.org/TR/SOAP.

Gartner 2001, Milind Govekar. Managing Total Business Integration. Procs.
of the Garner Symposium ITXPO. Cannes, France. Nov. 2001.

BusinessWeek 2002, Kerstetter, J. The Web at your service. BusinessWeek
e.biz cover story. March 18, 2002.
http://www.businessweek.com/magazine/content/02_ll/b3774601.htm.

Daniel Menasce, Virgilio Almeida. Capacity Planning for Web Services.
Metrics, Models, and Methods. Prentice Hall. 2002.

Gartner 2004, Whit Andres, Abrams C. Web Services Drive Market
Convergence.

Chapter 2 - Overview of Web Services

Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Self-Organizing Control
in Planetary-Scale Computing, IEEE International Symposium on Cluster
Computing and the Grid (CCGrid), 2nd Workshop on Agent-based Cluster
and Grid Computing (ACGC), May 21-24, 2002, Berlin.

Chaum, D.: Security Without Identification: Transaction Systems to Make
Big Brother Obsolete, Communications of the ACM, Vol. 28, October 1985.

Digital Certificates, CCITT. Recommendation X.509: The Directory -
Authentication Framework. 1988.

eCash, http://www.cryptologic.com/faq/faq-ecash.html, 2002.

ebXML http://www.ebxml.org.

289

290 References

Graupner, S., Kotov, V., Trinks, H.: Resource-Sharing and Service
Deployment in Virtual Data Centers, IEEE Workshop on Resource Sharing
in Massively Distributed Systems (RESH'02), Vienna, Austria, July 2002.

HP Utility Data Center (UDC), http://www.hp.com/go/hpudc, November
2001.

Kim, W., Graupner, S., Sahai, A.: A Secure Platform for Peer-to-Peer
Computing in the Internet, 35*'' Hawaii International Conference on System
Science (HICSS-35), Island of Hawaii, January 7-10, 2002.

Kuno H, Sahai A. My Agent Wants to Talk to your Service: Personalizing
Web Services through Agents. HPL-2002-114.

IBM Autonomic Computing: http://www.research.ibm.com/autonomic.

Lee T. B. The World Wide Web: Past, Present and Future.
http://www.w3 .org/People/Bemers-Lee/1996/ppf html.

Microsoft .NET Passport, http://wv^^.passport.com/, 2002.

Millicent, http.V/www.millicent.com/home.html, 2002.

Organization for the Advancement of Structured Information Standards
(OASIS), http://www.oasis-open.org, 2002.

PKI Forum, http://www.pkiforum.org/, 2002.

RosettaNet, http://www.rosettanet.org, 2002.

Sahai A, Machiraju V, Ouyang J, Wurster K. Message Tracking in SOAP-
Based Web Services. lEEE/IFIP Network Operations and Management
Symposium (NOMS 2002), April 2002, Florence, Italy.

Sahai A, Machiraju V, Wurster K. Monitoring and Controlling Internet
based Services. The Second IEEE Workshop on Internet Applications
(WIAPFOl), San Jose, July 2001 (also as HP Technical Report HPL-2000-
120).

Sahai A, Ouyang J, Machiraju, V. End-to-End Transaction management for
Web Based Services. Third International Workshop on Advanced issues of
E-Commerce and Web based Information Systems (WECWIS), June 21-22
2000, San Jose USA (also as HP Technical Report HPL-2000-168).

SAME 1.0 Specification Set, http://www.oasis-
open.org/committees/security/docs/draft-sstc-core-29.pdf, 2002.

Semantic Web, http://www.w3.org/2001/sw.

SET Secure Electronic Transactions LLC, http://www.setco.org/, 2002.

References 291

Simple Public Key Infrastructure (SPKI), SPKI Certificate Theory, RFC
2693, 1999.

T-Space at IBM. http://www.almaden.ibm.com/cs/TSpaces/. 1999.

The Liberty Alliance Project, http://www.projectliberty.org/, 2002.

The W3C Micro Payment, http://www.w3.org/ECommerce/Micropayments/,
2002.

Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. Available from
http://www.w3 .org/TR/wsdl.

Weber, R.: Chablis - Market Analysis of Digital Payment Systems,
University of Munich, http://chablis.informatik.tu-muenchen.de/MStudy/x-
a-marketpay.html, 1998.

Van Moorsel, A. Metrics for the Internet Age-Quality of Experience and
Quality of Business. HPL-2001-179.
http://www.hpl.hp.com/techreports/2001/HPL-2001-179.html.

WSCL Web Services Conversation Language,
http://ww^.w3.org/TR/wscllO, 2002.

WSFL Web Services Flow Language (WSFL 1.0), Edited by F. Leymann,
IBM, May 2001.

XML Key Management Specification (XKMS),
http://www.w3.org/TR/xkms, March 2001.

XML Encryption Requirements, http://lists.w3.org/Archives/Public/xml-
encryption/2000Oct/att-0003/0l-06-xml-encryption-req.html, December
2000.

XML Signature Syntax and Processing, http://www.w3.org/TRy2002/REC-
xmldsig-core-20020212, 2002.

ISAPI, Internet Server API (ISAPI) Extensions. Available from
http://msdn.microsoft.com/library/en-
us/vccore98/html/_core_intemet_server_api .28.isapi.29_.extensions.asp

NSAPI, Netscape Server API (NSAPI) Programmer's Guide. Available from
http://developer.netscape.com/docs/manuals/enterprise/nsapi/index.htm.

WSRF 2004, GGF author team. The WS-Resource Framework, http://wvm-
106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf.

OGSA 2004, Foster, 1., Kesselman, C , Nick, J., Tuecke, S., The Physiology
of the Grid: An Open Grid Services Architecture for Distributed Systems
Integration, 2002. http://wvvw.globus.org/research/papers/ogsa.pdf.

292 References

OGSI 2004, Open Grid Services Infrastructure (OGSI) Vl.O, http://forge.
gridforum.org/projects/ggf-editor/document/draft-ogsi-servicel/en/1,

Foster 1999, Foster, I., Kesselman, C. (Eds.): The Grid - Blueprint for a
New Computing Infrastructure, Morgan Kauffmann Publishers, 1999.

W3C-WSA 2003, The W3C Web Services Architecture working group,
draft, August 2003. http://www.w3.org/TR/2003/WD-ws-arch-20030808.

Burbeck 2000, Burbeck, S., The Tao of e-business Services, http://www.
ibm.com/developerworks/webservices/library/ws-tao, October 2000.

WSRF-Model 2004, GGF author team, Modeling Stateful Resources with
Web Services, http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.html.

WS-Resource 2004, Modeling Stateful Resources in Web Services.
http://wwwl06.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf.

WS-Addressing 2004, Don Box, et al., Web services Addressing, March
2003, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-addressing.asp.

WS-ResourceProperties 2004, Steve Graham, et al., Web Service Resource
Properties version 1.1, January 2004, http://devresource.hp.com/drc/
specifications/wsrf/WS-ResourceProperties-1-1 .pdf

WS-Notification 2004, Publish-Subscribe Notification for Web Services,
whitepaper, http://www-106.ibm.com/developerworks/library/ws-pubsub/
WS-PubSub.pdf.

Chapter 3 - Application Management and Web Services

Black 1994, Black, Network Management Standards: SNMP, CMIP, TMN,
MIBs and Object Libraries, McGraw Hill Computer Communications Series,
1994.

CIM, Common Information Model (CIM) Standards, Distributed
Management Task Force, http://www.dmtf org/standards/cim.

CMIP, OSI Common Management Information Protocol (CMIP),
Specification, 1998, http://www.iso.ch.

CMIS, OSI Common Management Information Services (CMIS),
Specification, 1998, http://www.iso.ch.

References 293

CORBA, Common Object Request Broker Architecture, Specification,
Object Management Group, 1999, http://www.corba.org,
http://www.opengroup.org/infosrv/Brand/SPS_pdf/corba.pclf.

DMTF, Distributed Management Task Force, http://www.dmtf.org.

Parlay, http://www.parlay.org.

Halstone 2002, Performance Challenges of Web Services Application
Architecture and SLA Management, IDC Report 28298, November 2002.

ISO9000, International Standardization Organization (ISO), Quality
Management Standards, 1993, http://www.iso.ch/iso/en/iso9000-
14000/iso9000.

OMG, The Object Management Group, http://www.omg.org.

OSI, International Standardization Organization (ISO), Open Systems
Interconnect (OSI) standards, http://www.iso.ch.

RFC 2571, Harrington, Presuhn, Wijen, An Architecture for Describing
SNMP Management Frameworks, IETF RFC 2571, April 1999,
http://www.ietf.org/rfc/rfc2571 .txt.

RFC 3411, Harrington, Presuhn, Wijen, An Architecture for Describing
Simple Network Management Protocol (SNMP) Management Frameworks,
IETF RFC 3411, December 2002,
http://www.ietf.org/rfc/rfc3411 .txt?number=3411.

WBEM, Web-Based Enterprise Management (WBEM) Initiative,
Distributed Management Task Force, http://w^ww.dmtf.org/standards/wbem.

Chapter 4 - Enterprise Management and Web Services

Booch 1998, Booch, Rumbaugh, Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley, 1998.

[Calo 2003] Seaphin Calo, Morris Sloman. Policy Based Management of
Networks and Services. VI1N3, September 2003.

CIM, Common Information Model (CIM) Standards, Distributed
Management Task Force, http://wvv^.dmtf.org/standards/cim.

DMTF, Distributed Management Task Force, http://www.dmtf.org.

Dyche 2001, Dyche, The CRM Handbook, Addison Wesley, 2001.

eTOM 2003, The TeleManagement Forum's Enhanced Telecom Operations
Map (eTOM), Michael B. Kelley, Journal of Network and Systems
Management, V1 ON 1, March 2003.

294 References

Hegering 1999, Hegering, Abeck, Neumair, Integrated Management of
Networked Systems: Concepts, Architectures, and Their Operational
Application, Morgan Kaufmann, 1999.

Hegering 2001, Hegering et.al.. Towards Generic Service Management
Concepts — A Service Model Based Approach, In Proceedings of the 7th
International IFIP/IEEE Symposium on Integrated Management (IM 2001),
719-732, Seattle, Washington, USA, May 2001.

ITIL, IT Infrastructure Library, http://www.itil.co.uk.

ITSM, IT Service Management, The ITIL and ITSM Directory,
http://www.itil-itsm-world.com.

itSMF, IT Service Management Forum, www.itsmf.com.

Martinka 1997, Matinka, Pruyne, Jain, Quality-of-Service Measurements
with Model-based Management for Networked Applications, Hewlett-
Packard Technical Report, HPL-97-167R1, 1997.

[Pavlou 1998] George Pavlou, Olivier Festor. Network Management
Information Modeling. Journal of Network and Systems Management.
V6N3, September 1998.

Sloman 1996, Network and Distributed Systems Management, Addison
Wesley, 1996.

TMF, TeleManagement Forum (TM Forum), http://www.tmforum.org.

WBEM, Web-Based Enterprise Management (WBEM) Initiative,
Distributed Management Task Force, http://www.dmtf.org/standards/wbem.

Chapter 5 - Managing Web Services From an E-Business Perspective

Baldrige 1997, National Institute of Standards and Technology, Baldridge
National Quality Program Criteria for Performance and Excellence,
http://ww^.quality.nist.gov/Criteria.htm.

Cutler 2001, Cutler, Sterne, Reiner, Business Metrics for the New Economy,
Whitepaper, SPSS Inc., 2001.

Forrester 2000, Schmitt, Manning, Paul, Roshan, E-Commerce Software
Takes Off, Forrester Report, March 2000.

Kaplan 1996, Kaplan, Norton, The Balanced Scorecard: Translating Strategy
into Action, Harvard Business School Press, 1996.

References 295

Machiraju 2002, Machiraju, Sahai, van Moorsel, Web Services Management
Network: An Overlay Network for Federated Service Management, Hewlett-
Packard Technical Report, HPL-2002-234, 2002.

[Ray 2003] Praddep Ray, Integrated Management from E-Business
Perspectives: Concepts, Architectures and Methodologies (ISBN 0-306-
47485-9)

Reiner 2001, Reiner, The NetGenesis Enterprise Architecture, Whitepaper,
NetGenesis Corp., 2001.

SOAP, Simple Object Access Protocol, Gudgin, Hadley, Mendelsohn,
Moreau, Nielsen,, SOAP Version 1.2 Part 1: Messaging Framework, W3C,
http://www.w3c.org/TR/SOAP.

XML, Extensible Markup Language, W3C, http://www.w3c.org/XML.

Chapter 6 - Managing Applications and IT Infrastructure
of Web Services

BEA WebLogic Platform, BEA Inc., http://ww^.bea.com.

Darmawan 2003, Darmawan, IBM Tivoli Monitoring for Web
Infrastructure: Managing WebSphere Application Server on z/OS, IBM
Redbook, April 2003.

DSI, Dynamic Systems Initiative, Microsoft, http://www.microsoft.com/dsi.

EJB, Enterprise JavaBeans Technology, Sun Microsystems,
http://java.sun.com/products/ejb.

Foster 2002, Foster, Kesselman, Nick, Tuecke, The Physiology of the Grid -
An Open Grid Services Architecture for Distributed Systems Integration,
2002, http://www.globus.org/ogsa.

GGF, Global Grid Forum, http://www.ggf.org.

HP Adaptive Enterprise, Hewlett-Packard, The HP Vision for the Adaptive
Enterprise: Achieving Business Agility, Whitepaper, Hewlett-Packard, 2003,
http://h71028.www7.hp.com/enterprise/cache/7504-0-0-0-121.aspx.

HP OpenView, Hewlett-Packard, http://www.openview.hp.com.

IBM Autonomic Computing, IBM, Architectural Blueprint of Autonomic
Computing, April 2003, http://wvv^w-
306.ibm.com/autonomic/blueprint.shtml.

IBM Tivoli, IBM, http://www.ibm.com/tivoli.

296 References

JDBC, Java Database Connectivity, JDBC4.0 API Specification, Sun
Microsystems, http://java.sun.com/products/jdbc.

Lindholm 1999, Lindholm, Yellin, The Java^'^ Virtual Machine
Specification, 2"^ Edition, Addison Wesley, 1999.

.NET, Microsoft .NET Framework, Microsoft,
http://msdn.microsoft.com/netft-amework.

MTS, Microsoft Transaction Server, Microsoft,
http://www.microsoft.com/com/tech/MTS.asp.

Nl , Nl Grid: Managing n Computers as One, Sun Microsystems,
http://www.sun.eom/n 1.

OV NNM, HP OpenView Network Node Manager, Hewlett-Packard,
http://www.openview.hp.com/nnm.

Rohm 2003, Online Analytical Processing (OLAP) With a Cluster of
Databases, lOS Press, November 2003.

Sadtler 2004, Sadtler, Ganci, Griffith, Hu, Marhas, Will, Jones, WebSphere
Product Family Overview and Architecture, IBM Redbook, February 2004.

UDC, Utility Data Center, Hewlett-Packard, http://www.hp.com/go/udc.

WSDL, Chinnici, Gudgin, Moreau, Schlimer, Weerawama, Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C,
http://www.w3c.org/TR/wsdl20.

WSFL, Leyman, Web Services Flow Language, IBM, 2001,
http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

Chapter 7 - Instrumentation of Web Services

ARM , Working group. Application Response Measurement API guide
http://www.omg.org/regions/cmgarmw/index.html.

TIP, Evans, J. Klein, and J. Lyon Transaction Internet Protocol -
Requirements and Supplemental Information, 1998,
http://www.landfield.com/rfcs/rfc2372.html.

Park 1999, J. T. Park and J. W. Back. Web-based Internet/Intranet service
management with QoS support. lEICE Trans. Communications., e82-b:l 1,
1999.

Open view WTO, Vantage Point Web Transaction Observer,
http://www.openview.hp.com/products/webtransobserver.

References 297

Kalbfleish, Kalbfleisch C et al. Application Management MIB. RFC 2564,
http://www.simpleweb.org/ietf/rfcs/complete/rfc2564.txt.

RFC 2287, System Application MIB. RFC 2287,
http://rfc2287.rfclist.org/rfc-2287.htm.

Stalling 1999, Stallings W. SNMP, SNMPv2, SNMPvS, andRMON1 and
2. Addison Wesley 1999.

Silvano 1995, Silvano MdiffQxs, Adding Group Communication and Fault-
Tolerance to CORBA. In the proceedings of Usenix Conference on Object
Oriented Technologies, 1995.

Sahai 2000, Sahai A et al. Message Tracking in SOAP based Web Services.
In the proceedings of lEEE/IFIP NOMS 2002.

Chapter 8 - Managing Composite Web Services

W3C , World Wide Web Consortium's SOAP specification
http://www.w3 .org/TR/SOAP.

Sturm 2000, Sturm R, Morris W. and Jander M. Foundations of Service
Level Management. SAMS publication. 2000.

Sahai 2001, Sahai A, Durante A, Machiraju V. Towards Automated SLA
Management. HPL-2001-310.

Daniel 2000, Daniel J, Traverson B, and Vignes S. A QoS M^tQ Model to
Define a Generic Environment for QoS Management. Third International
IFIP/GI Working Conference, USM 2000. Munich, Germany, September 12-
14, 2000. In Proceedings Lecture Notes in Computer Science 1890 titled
"Trends in Distributed Systems: Towards a Universal Service Market".
Springer Verlag.

Bhoj 1998, Bhoj P, Singhal S, Chutani S. SLA Management in a federated
Environment. HPL-98-203.

Lewis 96, Lewis D, Bjerring L. An inter-domain Virtual Private Network
Management System. In the proceedings of NOMS 96.

Lewis 97, Lewis et al. Experiences in Integrated Multi-Domain
Management. IFIP/IEEE International Conference on Management of Multi-
Media Networks and Services, Montreal, Canada, 1997.

Hall 1996, Hall J (editor). Management of Telecommunication systems and
Services: Modeling and Implementing TMN based Multi-Domain
Management, Lecture Notes in Computer Science 1116, Springer-Verlag,
ISBN 3-540-61578-4, 1996.

298 References

TMN, Telecommunication Management Network (TMN) at ITU-T.
Formerly CCITT. http://www.itu.int.

Aurrecoechea 1998, Aurrecoechea, C , Lazar, A.A. and Stadler, R., Open
Network Services for Management, IEEE Conference on Open Architectures
and Network Programming, San Francisco, CA, April 3-4, 1998.

Long T P, Jong W B, Woon HJ. Management of service level agreements for
multimedia Internet service using a utility model. IEEE communications
Managezine Vol 39, no.5. May 2001.

Forbath T. Why and how of SLAs [service level agreements]. Business
Communications Review, Vol 28. No. 2, Feb 1998.

Chatterjee BS, Sydir M, Lawrence T. Taxonomy for QoS specifications. In
the proceedings of WORDS'97, February, 1997.

Lewis L, Ray P. Service Level Management: Definition, Architecture, and
Research Challenges. In the proceedings of IEEE GlobeCom'99.

Hauck R, Reiser H. Monitoring of Service Level Agreements with Flexible
and Extensible Agents. HP OpenView University Association (HP-OVUA)
Plenary workshop, Bologna, Italy, 1999.

Tele Management Forum SLA Management Handbook, GB917, public
evaluation version 1.5 , June 2001.
http://vv^vAV.tmfcentral.com/kc/repository/documents/GB917v 1.5.pdf..

Samani M, Sloman M. Monitoring of Distributed Systems (A Survey).
Imperial College Research Report DOC 92/93. Sept, 1992.

WSLA, IBM, http://www.research.ibm.com/wsla/WSLASpecV 1 -
20030128.pdf.

WS-Reliability, http://otn.oracle.com/tech/webservices/htdocs/spec/WS-
ReliabilityVl.O.pdf

WS-Transaction, http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec.

WS-Agreement at GGF, http://www.ggf.org.

WS-Security, http://www-
106.ibm.com/developerworks/webservices/library/ws-secure.

Frolund 1998, Svend Frolund, Jari Koistinen. Quality of Service
Specification in Distributed Object Systems Design. Distributed Systems
Engineering Journal 5(4), Dec. 1998.

References 299

Chapter 9 - Management Using Web Services

Global Grid Forum Global Grid Forum, http://www.gridforum.org.

Globus Project, The Globus Project, http://www.globus.org.

Globus toolkit, The Globus Toolkit, http://www.globus.org/tooIkit.

Foster 2002, Foster, I., Kesselman, C , Nick, J.M., Tuecke, S., The
Physiology of the Grid - An Open Grid Services Architecture for
Distributed Systems Integration, DRAFT,
http://www.globus.org/research/papers/ogsa.pdf. May 2002.

Foster 2001, Foster, I., Kesselman, C., Tuecke, S., The Anatomy of the Grid
- Enabling Scalable Virtual Organizations, International Journal of
Supercomputing Applications,
http://www.globus.org/research/papers/anatomy.pdf, 2001.

Sun Grid Engine, Sun Microsystems, The Sun Grid Engine,
http://wwws.sun.com/gridware.

Platform, Platform Inc., http://www.platform.com.

Grid at IBM, IBM Blue Grid, http://www.ibm.com/grid.

GSI, Grid Security Infrastructure (GSI),
http://www.globus.org/security/overview.html.

X.509, Internet X.509 Public Key Infrastructure,
http://www.ietf.org/rfc/rfc2587.txt.

GRAM, The Globus Resource Allocation Manager (GRAM),
http://www.globus.org/gram.

Czajkowski 98, K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, S. Tuecke, A Resource Management Architecture for
Metacomputing Systems. Proc. IPPS/SPDP '98 Workshop on Job
Scheduling Strategies for Parallel Processing, pg. 62-82,
ftp://ftp.globus.org/pub/globus/papers/gram97.pdf, 1998.

RSL, RSL specification, http://www.globus.org/gram/rsl_specl.html.

MDS, The Monitoring and Discovery Service (MDS),
http://www.globus.org/mds.

Data Grid, The Globus Data Grid Effort,
http://www.globus.org/gt2/datagrid.htmI.

OGSA at GGF, OGSA Working Group, Open Grid Services Architecture: A
Roadmap, http://www.ggf.org/ogsa-wg/, November 2002.

300 References

UDC 2001, Hewlett-Packard, Utility Data Center,
http://www.hp.com/go/hpudc, November 2001.

FML, Farm Markup Language (FML) Specification, April 2001.

Graupner 2002, Graupner, S., Kotov, V., Trinks, H.: Resource-Sharing and
Service Deployment in Virtual Data Centers, IEEE Workshop on Resource
Sharing in Massively Distributed Systems (ICDCS-2002), Vienna, Austria,
July, 2002.

Andrzejak 2002, Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Self-
Organizing Control in Planetary-Scale Computing, IEEE International
Symposium on Cluster Computing and the Grid (CCGrid), Berlin, Germany,
May 21-24, 2002.

Appendix - Web Services Management Products And Solutions

CA, Computer Associates Inc., http://vsrww.ca.com.

Darmawan 2003, Darmawan, D'Amico, Foo, Glasmacher, Nosbisch, Yiu,
Tivoli Business Systems Manager Version 2.1 - End-to-End Business
Impact Management, IBM Redbook, May 2003.

ebXML, Technical Architecture Specification v 1.0.4, February 2001,
http://www.ebxml.org/specs/ebTA.pdf.

Feam 1999, Feam, Battis, Burghi, Feliga, Generes, Hendry, Langballe,
Designing Tivoli Solutions for End-to-End Systems and Service
Management, IBM Redbook, July 1999.

HP Adaptive Enterprise, 2003, HP Management Solutions for the Adaptive
Enterprise, Whitepaper, Hewlett-Packard, 2003,
http://h71028.www7.hp.com/enterprise/cache/7504-0-0-0-121 .aspx.

HP Open View, Hewlett-Packard, http://www.openview.hp.com.

IBM Autonomic Computing, IBM, Architectural Blueprint of Autonomic
Computing, April 2003, http://www-
3 06. ibm .com/autonom ic/blueprint.shtm 1.

IBM Tivoli, IBM, http://www.ibm.com/tivoli.

Ishii 1999, Ishii, Castoldi, Del-Cura, Perez, Tivoli Enterprise Performance
Tuning Guide, IBM Redbook, November 1999.

Jacob 2002, Jacob, Perez, Darmawan, Manoel, Moeller, IBM Tivoli
Monitoring for Business Integration, IBM Redbook, October 2002.

References 301

Manoel 2002, Manoel, Baker, Giannelli, Sadie, Weber, Introducing IBM
Tivoli Service Level Advisor, IBM Redbook, July 2002.

OV lUM, HP OpenView Internet Usage Manager, Hewlett-Packard,
http://vvww.openview.hp.com/products/ium.

OV NNM, HP OpenView Network Node Manager, Hewlett-Packard,
http://www.openview.hp.com/nnm.

OV Service Navigator, HP OpenView Service Navigator,
http://www.openview.hp.com/products/servnav.

OV SPI, HP OpenView Smart Plug-ins,
http://vv^w^w.openview.hp.com/products/spi.

OV TA, HP OpenView Transaction Analyzer,
http://wv/w.openview.hp.com/products/tran.

Potts 2002, Potts, Cox, Pope, Business Transaction Protocol Primer, OASIS,
June 2002, http://www.oasis-open.org/committees/business-
transactions/documents/primer.

SNA, System Network Architecture, IBM Systems Network Architecture:
Technical Overview GC30-3073, IBM, http://www-
306.ibm.eom/software/network/commserver/library/publications/csaix_60/d
ysllm02.htm#ToC_165.

Tretau 2003, Tretau, Andal, Battaglia, Edwards, Speh, IBM Tivoli Storage
Management Concepts, IBM Redbook, August 2003.

UDC, Utility Data Center, Hewlett-Packard, http://www.hp.com/go/udc.

Grand Central Communications, http://grandcentral.com.

Flamenco Networks, http://vvrww.flamenconetworks.com.

TransactPlus, http://www.transactplus.com.

Kenamea, http://www.kenamea.com.

Computer Associates: Unicenter - Managing On-Demand Computing:
Aligning IT With the Business, Whitepaper Computer Associates, 2003,
http://ca.com/unicenter.

Actional, http://www.actional.com.

Actional 2003, Effectively Managing an Enterprise Web Service Network,
Whitepaper, Actional Inc., http://www.actional.com, 2003.

AmberPoint, http://wvv^w.amberpoint.com.

Confluent, Confluent Web Services Management Platform, Whitepaper,
Confluent Software, 2003, http://confluentsoftware.com.

302 References

Microsoft, Microsoft Application Center,
http://www.microsoft.com/applicationcenter.
Service Integrity, http://www.serviceintegrity.com.

FIGURES

Figure 1: Web services space of tasks, metrics and time 10

Figure 2: Service life cycle 12

Figure 3: Interacting Web services 18

Figure 4: Service abstractions built upon resources. 19

Figure 5: Example of a WSDL Web services definition for the StockQuote
service 20

Figure 6: Example XML document for Inspection 22

Figure 7: Workflow between Web services. 23

Figure 8: BPEL4WS business interaction. 25

Figure 9: ebXML registry between two Web services 26

Figure 10: Example of Java-based Web service 39

Figure 11: PC purchase scenario 42

Figure 12: Business processes and Web services in PCMaker 43

Figure 13: Definition of a sample business process 44

Figure 14: Layers from IT infrastructure to E-business 44

Figure 15: General model of an application life cycle 49

Figure 16: Management process accompanying a managed domain 51

Figure 17: Management process life cycle that is subject to life cycle
management itself 52

Figure 18: Instrumentation in the managed domain with proxy for the
management protocol 54

Figure 19: General flow for executing a management process 56

Figure 20: Managing a management process 57

Figure 21: Example of a SLA definition in XML syntax 71

Figure 22: Instrumentation in the managed domain of an application 72

Figure 23: General interaction pattern for instrumentation protocols in a
managed domain ...74

Figure 24: Dimensions of enterprise management , 81

303

304 Figures

Figure 25: ITSM Methodology 91
Figure 26: Model-based management system 103
Figure 27: CIM Meta model 105
Figure 28: CIM MOF description 108

Figure 29: Model creation process 113
Figure 30: Example of a generic service model 114

Figure 31: Examples of performance rules for SLA observation 117
Figure 32: Four perspectives of the method of the balanced scorecard

[Kaplan 1996] 124

Figure 33: Stages of the Web services evolution 127
Figure 34: First view on the customer life cycle at a Web site 129
Figure 35: Key business problems addressed by Web services metrics and

Web services management 130
Figure 36: The customer life cycle from initial reach to final loyalty 132
Figure 37: Transitioning from Web site hits to business-relevant customer

data. 134
Figure 38: Classification of Web services business metrics 137
Figure 39: Calculating rates for customer life cycle metrics 137

Figure 40: Calculating the first purchase momentum 142
Figure 41: Calculating the repeated purchase momentum 143
Figure 42: Calculating acquisition cost 144

Figure 43: Calculating customer conversion cost 145
Figure 44: Calculating net yield 145
Figure 45: Calculating the connect rate 146
Figure 46: Calculating the growth rate (by example of converted customers).

146

Figure 47: Bottom-line impact of improved retention 148

Figure 48: Calculating stickiness 150
Figure 49: Calculating the measure for focus 151
Figure 50: Relating focus and stickiness 151
Figure 51: Showing customer's different content at different stages of the

customer life cycle 153
Figure 52: Personalization Index (PI) 154

Figure 53: Calculating the freshness factor 155

Figures 305

Figure 54: Application view to a Web service: n-tier architecture of a Web
service 160

Figure 55: A typical infrastructure view to a Web service 160

Figure 56: Three levels of IT management 162

Figure 57: Raw data collected from HTTP request traces from Web logs. 164

Figure 58: Example of a monitoring profile for an application server 170

Figure 59: Basic abstraction of managed service and a managed system.. 187

Figure 60: Managed service interaction 189

Figure 61: Instrumentation of an example Web service..... 190

Figure 62: SOAP messages exchanged between Web services 191

Figure 63: SOAP message used in the example 191

Figure 64: Web service interactions 192

Figure 65: Asynchronous message patterns between Web services 192

Figure 66: Management with MIB-based management agent 195

Figure 67: Schema for Simple Network Management Protocol (SNMP).. 195

Figure 68: Service correlation with measurements in ARM 199

Figure 69: Example ARM document 200

Figure 70: JMX management extensions 202

Figure 71: Web services log file analysis 204

Figure 72: Network packet sniffing at different protocol layers 206

Figure 73: Web services Log File Analysis 207

Figure 74: Service relationships 212

Figure 75: Protocol State Diagram for Two-Phase commit protocol 215

Figure 76: One-Phase Commit Protocol State Diagram 216

Figure 77: Outcome notification protocol state diagram 218

Figure 78: Sender and receiver exchanging SOAP messages. 220

Figure 79: The SAME domain model 225

Figure 80: Fragment of a digitally signed SOAP header document ..226

Figure 81: WS-Security document 227

Figure 82: Service Level Agreement between two services 228

Figure 83: Web services problem resolving. 233

Figure 84: Example SLA 235

Figure 85: Basic constructs of the Web service Level Agreement (WSLA)
language ,236

Figure 86: WS Agreement 237

306 Figures

Figure 87: Agreement protocol provider 238

Figure 88: A web service scenario with multiple partners involved 240

Figure 89: Example SLA 240

Figure 90: Example SLA 241

Figure 91: Management in an environment with virtualized and underlying
entities 250

Figure 92: Open Grid Services Architecture (OGSA) 258

Figure 93: Tivoli management structure 269

Figure 94: Vertical view to Tivoli Management 270

Figure 95: Resource virtualization in the Utility Data Center (UDC) 285

Figure 96: Operator console of the Utility Data Center showing the
configuration of an application environment 286

INDEX

Acquisition cost, 144
Actional, 277
Active Server Page (ASP), 209
Agent-based management infrastructure,

83-84
Agents, 194
AmberPoint, 277-280
Application Center, Microsoft, 280-282
Application creation, management in, 62-64
Application deployment, management in,

64-66
Application infrastructure of Web Services
managing, 163-171

metric collection and analysis in, 163-165
Application life cycle, 47, 48-50

management aspects versus, 59-61
management process steps versus, 61-62

Application management, 175-177
aspects in, 57-62
generalized view on, 51-52
processes in, 50-57
Web services and, 47-76

Application Management MIB, 196-198
Application management systems, 176
Application operation, management during,

6^76
Application Response Management (ARM),

198-201
Application Response Time (ART), 201
Applications, virtualization, 253-260
Application view of Web services, 159-161
ARM (Application Response Management),

198-201
ART (Application Response Time), 201

ASP (Active Server Page), 209
Association interface, 252-253
Associations, time-dependence of, 252

Balanced scorecard methodology, 125-127
B2B (business-to-business) domain, see
Business-to-business domain
B2C (business-to-consumer) domain, 130-131
BPEL4WS, 24-25
BPF (Business Process Framework), 111
Business problems, Web services and,

127-132
Business Process Framework (BPF), 111
Business Process Perspective, 124
Business-to-business (B2B) domain, 131-132
loyalty in, 141-143
Business-to-consumer (B2C) domain, 130-131
Business Transactions, 25
Business Utility, 255

CA (certificate authority), 225
CA (Computer Associates), 276
CA Unicenter, 276
Certificate authority (CA), 225
CGI (Common Gateway Interface), 38
CIM (Common Information Model), 104-105
CIM Core and Common Model, 106-108
CIM Meta Model, 105-106
Clients, 42
CMIP (Common Management Information

Protocol), 73-75
Collaboration Protocol Agreement (CPA), 25
Common Gateway Interface (CGI), 38
Common Information Model (CIM), 104-105

307

308 Index

Common Management Information Protocol
(CMIP), 73-75

Common Object Request Broker
Architecture (CORBA), 15
Common resource models, 259
Computational grids, 7
Computer Associates (CA), 276
Confluent, 280
Connect rate, 145-146
Consoles, 194
Consumer service, 211,212
Conversations, 4, 11, 25
CORBA (Common Object Request Broker

Architecture), 15
Cost per conversion, 144-145
CPA (Collaboration Protocol Agreement), 25
Creation, 49
Cross-layer management, 251
Customer life cycle, 132-133
Customer life cycle metrics, 137
Customer metrics, 138-144
Customer net yield, 147-149
Customer Perspective, 125
Customer ROI, 147-149
Customer ROI metrics, 144-149

Data and Information Utility, 255
Data center virtualization, 180
Data communication, secure, 222-223
Data Encryption Engine (DES), 221
DOOM (Distributed Component Object
Model), 15
Deployment, 50
DES (Data Encryption Engine), 221
Diagnosis rules, models for, 117-118
Digital certificates, 224
Digital signatures, 223-224
Digital Signature Standard (DSS), 223-224
Distributed Component Object Model

(DOOM), 15
Distributed Management Task Force (DMTF),

104
DMTF (Distributed Management Task Force),

104
Double-loop feedback, 125-126
DSS (Digital Signature Standard), 223-224
Duration, 143-144
Dynamic content, handling, 209

E-business, 121
ebXML, 25-26

EDI (Electronic Data Interchange), 141
Electronic Data Interchange (EDI), 141
E-MarketPlace, 21

Enabler, virtualization as, 179-180

Enterprise
FCAPS management in the, 85-88
system management in the, 78
role of, 80

Enterprise management, 79
Web services and, 77-118

Enterprise management systems, 80-88
Enterprise system management,
transformations in, 4-5

E-Speak, 16-17
eTOM, 110-111

Extensible Markup Language (XML), 5, 6-7

Fault management, 67-68
FCAPS, 58
FCAPS management in the enterprise, 85-88
Figures, 303-306
Financial Perspective, 125
Fixed association assumption, 248
Fixed topology assumption, 247
Flamenco Networks (FN), 275
FN (Flamenco Networks), 275
Focus, 151
Former tables, 197
Frequency, 139
Freshness factor, 154-155
Full transparency assumption, 248

GCC (Grand Central Communications) model,
275

Generic service model, 113-116
Generic virtualization layer, interface for, 249-

253
GF (Global Flow), 209
GGF (Global Grid Forum), 28
Global Flow (GF), 209
Global Grid Forum (GGF), 28
Globally Unique Identifier (GUID), 209
Grand Central Communications (GCC) model,
275
Grids

computational, 7
Web services in, 257-260

Grid Service, 27
Growth rate, 146
GUID (Globally Unique Identifier), 209

Handle resolution, 259
Highest authority assumption, 248
High-priced domain, loyalty in, 140-141
HP OpenView management suite, 264-269
HTMP (Hypertext Markup Language), 5-8
HTTP (Hypertext transfer protocol), 5, 6-7

Index 309

Hypertext Markup Language (HTML), 5-8
Hypertext transfer protocol (HTTP), 5, 6-7

IDEA, 221
IDL (Interface Description Language), 15, 19
Implied Resource Pattern, 30
Infrastructure, changing requirements in, 79
Infrastructure management
Linking with Web services, 162-163

to Web services management, 171-177
main areas of, 171
new challenges driving, 181-183
from Web service perspective, 177-180

Infrastructure view to Web services, 160, 161
Inner-layer management, 251
Instrumentation, 187-209

management information exposed
through, 189

standards in, 193-198
Instrumentation requirements for Web

services, 189-193
Integrated IT Services Management (ITSM),
89-100

general implementation, 93-100
general methodology, 91-92
processes, 92-93

Interface Description Language (IDL), 15, 19
IPsec, 222
IT, as service provider, 178
ITIL (IT Infrastructure Library), 90
IT infrastructure, see Infrastructure entries
IT Infrastructure Library (ITIL), 90
IT management, see Management entries
ITSM, see Integrated IT Services Management

Java, 7, 39
Java Management Extensions (JMX), 202-203
JavaRMI, 16
J2EE, 39-40
Jini, 17
JMX (Java Management Extensions), 202-203

Kanemea, 275

Learning and Growth Perspective, 123-124
Legacy management systems, assumptions in,

challenged by virtualization, 246-248
Log file analysis, 203-204
Loyalty in business-to-business domain, 141-

143
in high-priced domain, 140-141
in retail domain, 140

Loyalty value, 139

Maintenance, 49, 50

Manageability, standards in, 193-198
Managed devices, 194
Managed domain, instrumenting, 54-55
Managed object, 194
Management, 48

cross-layer, 251
defined, 52
by fact, 126-127
inner-layer, 251
model-based, 100-118
three levels of, 162
using Web services, 243-261
Web services and, 3-118

Management architecture, three-tiered, 84-85
Management aspects, application life cycle

versus, 59-61
Management Information Base (MIB), 193,

194
Management information exposed through

instrumentation, 189
Management infrastructure, agent-based, 8 3 -

84
Management interface assumption, 248
Management process definition of, 53-54

execution of, 55-56
management of, 57

Management process hierarchies, 56-57
Management process life cycle, 52-53
Management process steps, application life

cycle versus, 61-62
Management protocol, 195
Management systems conclusions for, 249

role of, in virtualized environment,
245-246

Market trends, 4-9
MD5 (Message Digest 5), 224
Message Digest 5 (MD5), 224
Method of Balanced Scorecards, 123-127
Metric collection and analysis in application

infrastructure of Web services, 163-165
Metrics dimension, 11
MIB (Management Information Base), 193,

194
Microsoft Application Center, 280-282
Model-based management, 100-118
Model creation process, 112, 113
Models for diagnosis rules, 117-118

for service management, 103-112
in systems management, 102-103

Monetary value, 143
Monitoring functions, basic, in Web services
applications, 169-171

National Security Agency (NSA), 223
NET, 41

310 Index

Network elements, 194
Network management, Xll-Xllt
Network Management Stations (NMS), 194
Network packet sniffing, 205-207
Networks secured, 222-223

Web service, 274-276
Net Yield, 145
NMS (Network Management Stations), 194
NSA (National Security Agency), 223

OASIS, 26-27
Object Management Group (OMG), 75-76
OGSA (Open Grid Services Architecture), 7-

8, 27-28, 257-260
OMG (Object Management Group), 75-76
Open Grid Services Architecture (OGSA), 7-

8,27-28,257-260
Open System Interconnection (OSI), 194
Operation, 50
Optimal site path (OSP), 153-154
OSI (Open System Interconnection), 194
OSP (optimal site path), 153-154
Outcome metrics, 126

Parlay Group, 111-112
Parties, 194-195
Performance management, 68-69
Perl, 38
Personalization Index (PI), 154
Phase-out, 50
Physicality assumption, 247
PI (Personalization Index), 154
PKI (Public Key Infrastructure), 224-226
Policy, 259-260
Providers, 42
Provider service, 211
Public Key Infrastructure (PKI), 224-226

QML (Quality Management Language), 230
QoS (Quality of Service), 102-103
Quality Management Language (QML), 230
Quality of Service (QoS), 102-103

RA (registration authority), 225
Recency, 138-139
References, 289-302
Registration authority (RA), 225
Registry and service discovery, 259
Reliability, Web services, 220-221
Remote Monitoring 2 (RM0N2), 201
Retail domain, loyalty in, 140
Return on investment (ROI), 147
RFM method, 138
Rivest-Shamir-Adleman (RSA), 222
RM0N2 (Remote Monitoring 2), 201

ROI (return on investment), 147
RSA (Rivest-Shamir-Adleman), 222
Rule-based processing, 167-169

Running application element control table, 198

SAML 1.0 Specification Set, 226
Scalability, 166
Secure authentication and certification, 224-

226
Secure data communication, 222-223
Secured networks, 222-223
Secure Sockets Layer (SSL), 222-223
Security, Web services, 221-227
Seducible moments, 152
Service, defined, 113
Service-centric computing, 16
Service domain, 259
Service Integrity Management Solution, 282-

283
Service Level Agreement (SLA), 228-238

assurance, 69-71
introduction to, 229-230
monitoring, 238-242
rethinking specifications, 231-234
specification languages, 234-238

specification of, 229-238
Service Level Indicators (SLI), 229
Service Level Monitoring process flow, 239-

242
Service-level tables, 197
Service management, models for, 103-112
Service model

generic, 113-116
recursive application of, 116

Service-Oriented Architecture (SOA), 29
Service provider, IT as, 178
Service Ufiility, 255
Shared infrastructure assumption, 248
Shared network assumption, 246-247
Simple Network Management Protocol

(SNMP), 193-195
Simple object access protocol, see SOAP

entries
Simple/Public Key Infrastructure (S/PKI), 224
Single-layer assumption, 248
Single Sign-On (SSO), 226
SLA, see Service Level Agreement
SLI (Service Level Indicators), 229
Slipperiness, 150
SLM Engine, 239
SMI (Structure of Management Information),

194
SNMP (Simple Network Management

Protocol), 193-195

Index 311

SOA (Service-Oriented Architecture), 29
SOAP (simple object access protocol), 5
SOAP instrumentation, 208-209
SOAP message, 191
S/PKI (Simple/Public Key Infrastructure), 224
SSL (Secure Sockets Layer), 222-223
SSO (Single Sign-On), 226
Statefiil resources, 29-30
Stateless Web services, 29
Stickiness, 149-150
StockQuote service, 20
Storage management, 174-175
Structure of Management Information (SMI),

194
SUN ONE, 41
Syntax notation, 194
Systems Application MIB, 196
Systems management, 173-174

in the enterprise, 78
role of, 80
models in, 102-103

Talking Blocks, 275-276
Tasks, 114
Tasks dimension, 11
Telecom Operations Map (TOM), 110-111
Tele-Management Forum (TMF), 110-111
Three-tiered management architecture, 84-85
Time-dependence of associations, 252
Time dimension, 11
Tivoli management suite, 269-274
Tivoli product portfolio, 271-274
TLS (Transport Layer Security), 222-223
TMF (Tele-Management Forum), 110-111
TOM (Telecom Operations Map), 110-111
Transactionality, Web services, 214-219
Transaction history tables, 197-198
Transaction related tables, 197
Transport Layer Security (TLS), 222-223
T-Spaces, 17
2PC protocol, 214-219

UDC (Utility Data Center), 283-287
UDDI (Universal Description, Discovery and
Integration) technology, 18,21-22,40-41
Underlyings, 243-244
Uniform representation through Web services,

243-245
Uniform Resource Locators (URLs), 3
Uniqueness assumption, 247
Universal Description, Discovery and

Integration (UDDI) technology, 18, 21-
22,40-41

URLs (Uniform Resource Locators), 3
Utility computing, 253-257

infrastructure, 256-257
stages towards, 255

Utility Data Center (UDC), 283-287

Velocity, 152
Virtualization, 243-244 assumptions in legacy

management systems challenged by,
246-248

asenabler, 179-180
Virtualization applications, 253-260
Virtualization layers conclusions for, 249

generic, interface for, 249-253
Virtualized environment, role of management
system in, 245-246
Virtual networks, 180
Virtual private network (VPN), 223
Virtual server, 180
Virtual storage, 180
VPN (virtual private network), 223

WBEM (Web-Based Enterprise Management),
109-110

Web-Based Enterprise Management
(WBEM),

109-110
Web server plug-ins, 207-208
Web Service Inspection Language (WSIL),

22-23
Web service interactions, managing Web

services to, 213-227
Web Service Metric Reporting, 168-169
Web service networks, 274-276
Web service perspective, infrastructure
management from, 177-180
Web services, 4-5,47

application infrastructure of, see
Application infi-astructure of Web services
application management and,

47-76
application view of, 159-161
business problems and, 127-132
choreography, 23-26
composition, 212-213
definition, 3-4, 28
description, 18-20
discovery, 21-23
emergence of, 5-8
emergence of paradigm, 3
enterprise management and, 77-118
in grid, 257-260
infrastructure view to, 160, 161
instrumentation of, 187-210
instrumentation requirements for,

189-193
introduction to, 15-17

312 Index

key business areas addressed by, 129
life cycle management, 11-12
linking infrastructure management
with, 162-163
management and, 3-118
management of, see Web services
management
management using, 243-261
managing, to Web service interactions,

213-227
managing applications and IT
infrastructure of, 159-183
managing composite, 211-242
overview of, 15-45
platforms for, 38-41
reliability, 220-221
security, 221-227
stateless, 29
state of the art in, 17-26
transactionality, 214-219
uniform representation through, 243-245

Web services applications, basic monitoring
functions in, 169-171

Web services business metrics, 133-155
classification, 136-155

Web Services Description Language
(WSDL), 18, 19-20

Web Services Distributed Management
(WSDM), 36-37

Web Services Flow Language (WSFL), 23-24
Web services management, 9-11, 26-37

from E-business perspective, 121-157
linking infrastructure management to,

171-177
need for, 8-9
perspectives on, 121-183
practice of, 187-261
products and solutions, 263-287

Web Services Metric Analysis, 165-167
Web Services Resource Framework (WSRF),

27-36
Web site behavior metrics, 149-155

Windows Management Instrumentation
(WMI),201
WMI (Windows Management

Instrumentation), 201
WS-Addressing, 31-32
WS-Agreement, 236-238
WS-BaseFaults, 35
WS-BaseNotification, 34
WSDL (Web Services Description Language),

18, 19-20
WSDM (Web Services Distributed
Management), 36-37
WSFL (Web Services Flow Language), 23-24
WSIL (Web Service Inspection Language),

22-23
WSLA SLA specification language, 235, 236
WSML SLA specification language, 234-235
WS-Notification, 34-35
WS-Resource, 31-32
WS-Resource Destruction, 33-34
WS-Resource Identity, 33
WS-Resource Lifecycle, 32-34
WS-Resource Properties, 32
WSRF (Web Services Resource Framework),

27-36
WS-Security, 227
WS-ServiceGroup, 35
WS-Topics, 34-35
W3C,3

XLANG, 23, 24
XML (extensible Markup Language), 5, 6-7

Yield, 145

